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CHAPTER 1. USING -CALCV LA TO RS IN'MATHEM A, CS.

.9

In this chapter you will become familiar with different kinds of

calculating languages and you will learn how to compute with algebr
\

aic,

RPN, -and arithmetic Calculator logics. will also learn, simple

programming and h?w to tfanslate a verbal alg*o.rithrrf into calculator,

microprocessor, or computer steps.

1. 1 Order of Operations

v. Communication of ideas- is important in mathe
1 f

ics. The reader

of mathematics must'understand what the writer of mathematics means.

. For- this reason we adopt rules for writin and reading that are generally
111,

accepted. For example, when we write

5 + 2 x 3

we want ail'- readers to 'interpret what we have written in the same way.

Of the.twd choices
t

(a) 5 + 2 x 3 (b) 5 + 2 x 3
7 )i 3 .., * 5 + 6

i 21 11

you wouldprobably choose (b), answer 11, because you r ecall rules for

order of operation* Unfortunately a younger brother or sister in elemen-
,

tary school or an adult who has not studied scllool mathematics (or has

forgotten it)Would probably choose-(a). ,Thus rules designed to improve

It

A
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. -4,. 1 - 2.

. '.
communication semetimep fail. We will review 'those rules and`see

how calctilatc..7c f..?..,-.. us once aggin to watch our tarp.

ORIW4. OF OPERATIONS RULE. Apply operations
..,

in the following order:

... a (1) within 'parentheses ,
(2) exponenti-ation (powers.and roots).
(3). multiplication and division*
(4.) addition and subtraction

t

Students'soroetirries re/ember this rule by theTnnemonic:
I r

Please Enter ,
My Dear Aunt Sally (fo,T Parentheses, exponents,

1
_

r

t
a ..

.
_multiplication, division, addition, subtraction). Only in the absence of_

rile priorities do you calculate left to right.

EXAMPLE 1.1-1 Evaluate 2' 42 - 6 :. dr- + 5 8

7

IT
Solution: 2 4 2 - 6 .t -+ 5 87

3
2 16 - 6; 7 + 5 8

32,- 14.4-40

. 58
.

.6 .

I

I

.

exponentiatiori

multiplication and di-Vision
,

addition and subtr/action

EXA/vIPLyf 1.1-2
.

Evaluate
-, 5 +3 4*

10 2,- '32

2 5 + 3 4
Solution:

10 2 - 32
At

2 5 + 3 4

..
10 2 - 9

a

/
exponentiation

In order to avoid rare instances wi3 confupion might'arise, some
..:-, authors instst upon multiplicationton beforediviiion. We do not adopt

that convention in this tckt. ...
(

. ..,,,

I

I

I

I

I

I

I

I
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f

10 + 12
20 -' 9

01,

22
11

multiplication. Note that the
fraction bar (vinculum) plaits ,

a t\ole as pareittheses.*- Thus .

-numerator and denominator are
simplified before division.r
addition and subtraction

2_ 1 (division
It

These examples have been worked out in detail. In practice many of
)

these steps would be, skipped. For example the second solution might

be recorded as
2 5 + 3 4 22 . 210: 2 - 32 11

, 1

Exercise c.q 1.1

I - 8

(1)

Evaluate:

2 3 +6
.11. (3) 6 + 2 3

(5) 7 + 2 , 5

(7) 2 5 + 7 '

(2) 2(3
(4) (6 + 2)3.
(6) (7 + 2)5
(8) 2(5 + 7)

44

').

9 - 16 Some writers use parentheses as "insurance" to guarainte

4

that readers will calculate in the desired order. When it is possible

in each of the following, write an equivalent expression without

parentheses.'

(9) (ab) 4 (cd)

(11) ( -: s,i -cc-i)x -ei,

,-/

(10) b)(c + d)

(12) ,a i (--d X .2-)
b f

* ..

Another example of this usage is in roots like 15+7. The root symbol ,

is J and the.bar is a grouping symbol. In Europe )1,17---- is often
written 4 (x + y) .

s

/

1
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(13) a[b + c (d + e)]

(i5.) f [(ab) di +

17. For_each of the exer'

1.1 4

(14). {[(a + b) + c] - d}

[(cd) - e](16)

are

- 16, evaluate (aLthe original ex-

ression ahs1._(b) your srmplified expression for the values a = 6,

b = 3, c =4; d = 2, =7, fl -L

1

18 - 24. Notice in the following exercises how order Makes"Pi'no difference

in exercises involving addition and subtraction, but seems to in

exercises involving multiplication and division. Evaluate:

(18) 2 - 3 +5 (F9) 2 + 5 - 3 I

(20) -3 + (5 + 2) (2.1) 2 10 X 5 Be careful!

(22) 2 X, 5 ; 10 (23). 2 (10 X5)

1,

I r

I ,)

1
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1. 2 .- 1,
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1. 2 Calculating Logic: Algebraic with Memory

The calculator or computer user must learn how to process numbers,

on the specific instrument he is using. This is important because of dif-.
.-ferences among calculating devices. In this'section and, the next three, we

introduce severest common calculating "logics". calculators operate

by one of them or by a minor variation. A use tends to become accustomed

to the logic of his machine and to prefer it. ed, each has certain ad-

vantages which we will consider.; Even if you will be using a calculatitng

device with a particular l'ogic system, .it is important to know how, the others
. .

work. 'Who knows what kind you'll be using next?

ALGEBRAIC LOGIC

Algebraic logic is a common calcu- CLR
1.

lator logic. The figure diosplays a keyboard

for a simple algebraic logic calculator. (Do

V
not look for, a calculator with this exact dis-,

play as most have additional keys like

and that are useful but not n

to this discussion. ) Some keys are m

with common abbreviations that we will continue

4

RCL

9

5 El
LI] 1_3]nary

L.() I CHS
'M

to utre in this to : CLR - clear.; STO - store;
I

RCL - recall; C'HS - change sign, This last key is sometimes marked

instead.



The logic of this Machine
,-

the order rules of algebra ,you leanned in Section 1. 1.

are fed into the machine

1.2 - 1

I
.

much as you would type them on a typewriter

74y

is called algebraic but itidoes'n't follow

Calculations

(without spacing).

212

Ari instant affer the

prodUct

Chains

Thus the multiplication

= is pressed

1288

23 X 56 wourd be keyed

the calculator displays the

of Nperatimies may also be keyed directly. into the calcu-

lator'under ce rtp.in conditions..

EXAMPLE 1.2 - 1. Calculate 21 )C 32 X 61 24 I

2 iL

SolutiOn:' Key:

3 2

Final Display: 170&.

EXAMPLE I.2 - 2. Calc

Solution:, Key:

1

13 II II 5.11 1[7 I

I I

We will not attempt to replica
text. Machines differ widely;.
filling with liquid, or printing
These, may be seen by looking
many different displays could

2 4

3. 1 5. 7 + 4. 6

4

/
V

to calculator or computer displays in this
most, howe.ver display numbers by lighting,
some or all of seveksmall bars Ad

1 o e 1 y . You m ht like to determine how
be made.with the e seven bars

,

;
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.. .

Display; 2 . ,

1 -s

.

It is both interesting and useful to dote that intermedia,te results are
..... .

"'
displayed.on the cal.culator"at Various points in these;chains of opera-

,
.

tiOne. In Example 1.2-1, for instance
4

when the second
i

_ is

keyed in the calculation the display becomes

6

...

i
I

,../

which is the product 21 X 32, the,firstl two factors.' Similarly w en

the is keyed theilisplay changes to

672

p
. .

4(1,992
.

the result of the calculation to, this point (21 X-32 )( 6.1 = 40292).
A

In exactly the same.way in Exawple 1.2-2 the intermediate result

is displayed when the +

-2. 6
4

-.-

is keyed. I

It should be clear that algebraic logic is fine for chained compt-

tations that prbcess left to right.' But we baw&in'Section.l. I that many
A .

computations do not have thi simple order, Syh computations lead to
A \

problems. To detect these problems the user must be alert; to solve

them ingenuity must be exercised. The user Must supply the one thing

If

the caleulator" cannot: thinking! (This last sentence wil)1, in fact, be a

centifal message in all' that follows. )
,4 .1

Consider the calculation
ra'' .

E X AM. P LE 1. 2-3. / 2 X 3
5 X 4

12
t

i
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1 2 -4

)

We know that the answer to this Galculktipn,is3/10. or ."3, and we

would expect the calculatpr to display 0. it You might atteknpt to carry

this out by the- following sequence.

2 3.

.the result of ihi$,seqtence 4.8, the wrong answer: Can you see

what is incOrrect in are. tion? The e ror is identified if the

fraction is tepresented differently:
4

2 X 3 2 X' 3 x 1 1 l'
X,= 2 X 3. X' 1( 2' X.3 ; 3; 45 x 4 5 X 4 5 4

® g
Thui, in geAeral, each factor of the whole denominator is a divisor This

is a useful calculating technique to remember (but bewiPof applying it
a

when the denominator is a sum. gee example 1. 2- 4

A corrected cialculation is

giving the correct result

A more difficult problem is pre'sented by'a calc ation like:

EXAMPLE 1.2 -4.
49 +,38,,,
85 + 96'

This time we 'have no direct solution technique. Seveial alternatives are

available:

13
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Solution (I)

1. - 5

Calgrulate 49 4 JO. . Record the answer 87ori

scratch pad. 191/-.Calculate 85.4'96. Record this-answer, 181

ralc4lat* 181. This quotient, 0. 4807* is The answes.

. to the exercise.

0 ^There is-nothing wrong with the solution shown here, but such a solution

does, not use the full power oftheylculator. It is more.than a ,matter of

elegance not tdhave to write down such intermediate answers. Time may
I 4

be lost and additional opportunities for error are accumulated as you copy.

and reenter numbers. Use of calculator storage. (or memory) provides an

alternative.

Solution (2)

5

STO

9 6

1 8

4

Calculate the denominator, 181.

Store this number in calculator memory.

Calculate the numerator, 87.

RCL
.

brings back the denominator

1,84 from memory.

The quotient 0 4807 is displayed,

Reiults in this text will be given for 4-digit decimal rounding displays.

f

1
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Exercise Seit 1.2-

I

.

I
1.2 - 6

Some of these exercises call for a caltculagtor with simple algebraic
.,-

4

logic with memory.(tf your calculator also has parenthe'ses keys, do not

. use them. 4)

to

1 = I
1) Name four other keys that could replace in the calculation

of Examples 1 and 2 to give the same4 answer State a reason why

you ,would not use these substitute keys If you were carrying out a

2 )

,
aerie% of calculations. (Try calculating 2X 34,., followed without

I t

clearing by calculating 3 + 4;)

One step in Solution l'2-4(2) of the text may be eliminated. Examine
4'

the calculalTon carefully in order to find the extra step. Check your
-,-

t, . more elegant solutictn on a calfula.tor.
II

3) In. Solution 1. 2 -4(2) we calculated4'the denominator first. Try cal- ..

culatingthe numerator first. What happens?, (Some more sophis-i,

ticated calculators have a key that switches the contents of store

and the /display registers to avoid this kind of trap, )

4 - 10. Calculate, keeping intermediate record keeping to a minirnum.
L.

-4,

Note which exercises require such records. RECALL THE ORDER RULES

FROM SECTION 1.1.

4) 237 X 42.5 + 38. 46 5) 39.42 + 861.7 X 6.03
t

6) 23.7 i .06 13.2- 7) (78.35 + 91. 46)(14. 08 - 27.61)
__

..

8) 2. 8"; Try to find an elegant way to calculate this.

4



9)

4

37.48 - 16. 89
64.3.2 . 10)

1 -

64. 32
37. 48 - 16. 89

1.2 - 7

11; How should the aners to exercises 9 and 10 be related? Check

this by calipulatio

12 - 16 Calculate. vote intermediate records.

239. 5 - 67. 34 ,12) 13)
(74. 2)(86. 3)

.(74. 2)(86. 3)
239.5 - 67.34

14) (37. 6. -,18. 4)(15-. 2 - 83. 1)(64. 2 + 73. 8) Beware: Some algebraic

calculators allow the user only to add to or subtract from'rnmory.

If you are using one of those calculators, be sure to clear memory

beforeYstaring a second number.

15) (37.6 .L 18. 4(15. 2 - 83.1).
64. 2 + 73. 8'

4

9

-1? p

16

16) (83 - 1.3752) 62.43
4231(16. 8 - 23. 4)

4

,e
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1.3, Calculator Logic: Algebraic with Parentheses*

1. 3 , 1

The simple addition of parentheses to the algebraic keyboard sim-

plifies,much computation . The figure dis

plays a keyboard for calculator operating

with this logic which we will call AP. Al-

,most all such calculators have additional

features like

1 ix , but we restrict our% j land
1

1

ST011 RCL1 ,

discussion to the ones shown.

1

Lo]

8 9

3 1

CHS, pw.

A quick comparison of this keyboard with the keyboard of Section

1. 2 shows that only two keys are differeni:.

replace by and

and( RCL are

Q.

Surprisingly this minor modification

makes theakkeying of complex calculations much simpler..

The, main point to Oemember: Parentheses on the 'calculator play

the same role of grouping computations that they do in algebra. There is,

4however, a difference in usage. The algebraic expression

a {b + (cd -

would applar as the calculator sequence

4

a x (b + (c x d - e))

,

in sections 1.3 iht °ugh 1. we :::111 refer to algt-b-raic logic with paren-
theses as ,AP 1-ri order to differentiate it from the algebraic memory logic
of section 1. 2,0(

17
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1.3 - 2

Thus braces; bracketi and other grouping symbols are all represented ''

by the same symbols, parentheses.

VAMPLE 1.3-1. . 49 + 38
135 + 96.

(Recall that this was Example 1.2-4 of the last section.)

4

Solution: r

9 -El 13
1.,

L_

I

8
1

I Calculate the numerator
4

.... Divided by... (numerator displayed: 87)

.. the quantity ... (signals ,a calculation

to be done out of sequence)

) 1-1 .71 1 l't I. F7,I
L8_J L'___.1L+_. a 19 i [b I

r) I

.1

=

Calculate the denominator
a.

Completes the calculation in parentheses

and displays it (181) )

Di4ilays the quotient of 87 - 181, 9.4807

Notice the effect of the right parenthesis,

,/-A (1) It plays the role of the . 1

most recent left parenthesis
.

(2) It "backs up" the calculation to yvhe;e the lett parenthesis

key for the calculation since the
-. ./-

and displays the result.

(

...,was keyed."-Thus the calculator acts as though you had just enteredit

_,

. The next example wiall show this

the calculated value of what is in parentheses.
....r

I,

_......- .

WARNING: Rarentheses do NOT represent multiplication!

1, e

15

4

ir

I

N.

4
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EXAMPLE 1.3.-2

Solution:

I Q 12(7--]
I I I-451

II

i

HHT'i I 71

8
11,91r7,1

-4.9 (3.7 - 8 9)

I

1.3'- 3

Enter the multiplier, -4 9

Multiplied by . . (since the parentheses

do not carry this meaning)'

Calculates the value of theJexpression

in patentheses (. -5.2)

Displays the product of -4. 9 and -5.2,

the answer 25.48

A modified algebraic logic that is closer to the rules of section 1.1

is called 41 or AOS logic. Calculators like the TI-58 employ this -logic.

These letters represent the words Hierarchical Algebras nd.4lgebraic

Operating System. With AB logic calculators the calculation

1. /3t,+ 5 X 7
AB,

could be keyed 'left to right without parenthesis.

4c/

The calculator "nemembeis"

3 +

when gap

14 7

is pressed that multipli-.

cation takes precedence dlIer addition.

vAH calculators also require either memory or parentheses to
. _

ekercises like )!cample' 1 i-1., On arrAH calculator"with parentheses tik...,_

calculation would be:

El El t71___ Pi III El Fi 5

19

.r-7)1 9
L 6 171

L_J



°Without the firit pair of paretithesea, the calcillatinn

1.3 - 4'

hP for:

38 1 i49 +\ 85 + 96

Without either pair it would be

49 38 + 96
85

All Al-I calculators have both memory and rentheses as calculator

functions.

ti

Exercise Se

1 - 10 Rewrite each of the following expressions, for AP logic: -

4(a) removing parentheses that will not change the value algebraically,

(b) removing parentheses that will not change the value in talcuVtor

corn illation

1)

.3)

5)

7)

9)

3 + (5 - 7)

(2 X 7) /
2)

,4)

6)

8)

10)*

(31 -'14)

5)(8 (3 +

27. + (41. 7 X 3. 6)

41.7'X ( + 2Z. 3)

...14
A

an AP calculalor:11 - 14 Compute wi

11) 37.8 + (.06 X 1,)

13.,) (2. 8 + 4. 5)2(16 + 39. 23)2

20 X (10 5)

20 4 (10 X .5)

(27.3 + 41 7)3. 6

(41.7X 3.6)' + 27. 3

(28 X 3) + 8
((26 + 7) X 4)

12) -1.06 X 37 8

26. 414)
0A _ 12
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,v
- 4, 1.3 - 5 1

-
.N.

, -

.., I
15 - 16 .Calculate by algebtetit..7me,mor,y, by AP and by AH to

compare iprocedurps: 111)

4 ,

15)
264
327

-
8

189
16) -(48. 3 + 27. 9)(79.e, 43. 7)(67. 1 - 4)

17) In the song "The Twelve Days of Christmas", the lyries begin:

"On the first day of christmas

My true love gal: to me_

A partridge in a pear tree "

On the second day are given:

Two and a partridge

On the third day:

Three French bens, -two turtle doves and a partridge.

So it goes through twelve, days until on the twelfth, for example,

she receives:.

"Twelve l I &leaping, eleven ladies waiting, ten...

[all the way down tor... partridge in a pear tree."-

Now suppose that on Christmas -day the lovers break up and the gifts*

are returned one each day. For example, on the dayikfter Christmas one

of the partridges might be returned, the next day another, the following day,

another,. the following day a French hen, and so on. When will all the gifts

have been returned?

1 21

1ST



1.4 - 1

f . 4 Calculator Logic: R everse' Polish Notation .00r

The letters RPN represent Reverse Polish Notation, the.country

designated beciuse 114 Polish logician J. tukasiewicz develpped the system_ .

le
RPN is, in fact, often called JG ukasiewicz logic. The reason for the R (Re-

verse) is that in this notation d'peratio,n p yrribols are applied in order that is

the reverse of what we learn in arithmetic and algebra. Thus

3*+ 4 in RPN is 3 4 +

Think about that notation for a minute. What would happen if you keyed

into any calculator:
A.

1311411+1 ?

It would record the number 34. Because of this problem an additional key

appears on RPN calculator keyboards, the ENTER ti key. *
Thu-s

3 + 4 'is keyed:

1 3
ENTER1 +

On many RPN keyboards the ENTER key is larger because it is used so

often.

Why would anyone want to change things around like that? It turns

out that there are good reasons for doing so. If you ex nine Algebraic and

RPN keyboards,' you will see,that_the RPN ENTER replaces three algebral
, 4

keys: .

We will soon see that the arrow ( t) on this key has a role to play as well.
. a
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RPN" Algebraic or AH

IENTERr E[(, i )1*

We will now explore how this works.
owe

1.4 - 2

All calculailts must retain numbers and pperations in memory
t .

daririg calculations. If this were not true, the calculator wrIel "forget"
. ,

4

the 4 when you sought to add 4 to it in the calculation 3 + 4. To accomplish

this RPN calculators have what is called a stick.
. .

The calculator display is the "bottom" register of'the stack. "Above"..
.

it are additional registegs. Here is the. four registfr stack found on a

.

r

lir\ RPN programmable calculator:. 'cs-1

I

REGISTER NAME

T

Z

.X

0

0

0

0

P

I

.
DISPLAY t

L.-,
.

The stack registers are arbitrarily named X, (the display register),
4

' Y, Z, and T, as shown.
I.

As a number is entered in the stack it pushes other numbers up.

When an operation is performed the stack (usually) moves dowri.
to .

I (amel

A

.

*
. RPN logic with an n-register stack also replaces n-4 algebraic storage

resisters.
4..,,

**

...
1

I

4.

- . 4
In fact all calculators have similar stacks. On algebraic is calculators,

for example, the I ( J key or even the
I r

key active( a stack. Because
the stack plays a greater role in RPN, it isconsidered here in more detail.

.
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t
.40 yAMPLE 1.4-1 , 'Add 23 and 41

\

Kt YS STACK
I.

Step 1. When 23 is
Z 0 keyed; it enters

the X- register in
'Y 0 ' the stack.

I

0 ir

,

1.4 - 3

I

\ x

ENTE

I

4,
]

4r

1

+

T

Z

Y

X

T

44
Z

Y 23

X . 41 I

T 0

Z

Y

X

23

23

23

0

0

0

0

64

DISPLAY

/
Step 2. When ENTER

is keyed, the X- register
is copied into the Y-
registel- (Y and Z re-

le gist)rs also move
DISPLAY up one level.)

Ste When 41 is
keyed, . it REPLACES
the contents of the
X-register.

DISPLAY

. .

.
a

Step 4. Wthen + is keyed,
it adds the X and Y re-
gisters. (T and
gisters also move ow

one level.

re-

DISPLAY

a
\

The power of the ENTER key and the stack will be shown through a second

example, a type of calculation that was a problem for us in AH and algebraic-

memory logics.

4
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1
EXAMPLE 1.4-2 Calculate

36.2

3 6

2

'KEYS

L2

ENTER

8 1

rENTER1

1

T

y

T

Y

X

T

25. 8 - 28. 3

STACK

0

0

4

I

Step 1. 'Key in 36. 2.
Ibrappears in the .

X- register display.

36.2 DISPLAY

36.2

36.2

0

0

1L. 7
V

25. 8

T 0
2

Y

36. 2

25. 8

25. 8

Step 2. ENTER copies
X into Y.

DISPLAY

Step 3. The 25.8 re-
places 36.2 in the
X- register display.

DISPLAY C

Step 4. ENTER copies
X and moves Y to Z.
This second ENTER
key allows us to calcu-

late the denomina-
DISPLAY for separately.

25
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36.2 _36. 2
25. 8 - 28. 3 -2. 5

STACK

T

Y

X

T

Y

X

0

36. 2

25..8

28. 3

0

36

-2.5-

T

Y

X

0

1:4 - 5

Step 5. The 28.3 .re-
places 25.8 in the X-
register display. IIcv
all numbers are jn the

stack.
DISPLAY

a

Step 6, The contents 4(
the .X-register is subtrac-
ted from the Y-register.
Z moves down to Y. The
X-register now displays

DISPLAY -2.5 = 25.8 - 28.3,
the -value of the de-

nominator of the fraction
being computed.

Step 7. The Y-register is
divided by the X-register
and the answer displayed.

-14.48 DISPLAY(
36:2 - -14 4825. 8 - 28. 3

The following diagrams will show how the registers in a 4 register

stack, change when various keys are depressed.



ENTER

.10

r . 0

010

,
,-,

,00xTT

ZrAZ
Y''' Y

XX* X

. % ik,

L i

1CLX

L.

.0-

. se

/--/

X

I

X.

if 1

T

a

clear
all{

w

T

1

4 '1.4 - 6

...

In RPN logic,l'use the ENTER key (for binary operations)

i
(.1) after the first number in a calculation

(2) after the first number in a sub-calculation (the

1=1....6

'denominator of a- fraction or any other calcula-

tion
----1.- ' .

that would be placed in parenelleses. )
0

RI

A final calculator logic which we comment on only briefly is called.
- sv

Arithmetic logic. Arithmetic logic is like RPN for addition and subtrac-

tion ind.like algebac' logic for multiplication and division. The easlea
. . .

ICT.....0..r'.
e

Recall thatif a number is keyed next itwill 'replace,this.

27
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1.4 - 7

way to identify Arithmetic logic calculators is by the combined functiOn

keys and

many business calculators operate with Arithmetic logic. We will not

refer to this logic again in this text.

t41P
4Exeucise Set 1.4

1 12 In each of the following exercises, the stack is shown as it-was

before the is depressed. Show what the stack will be after the given

key is depresse

1

5)

9)

2

3

1

2

3

5

2)

6)

BE
.CAREFUL!

10)

2

4

2

4

2

3

0

CLXI

3)

2

2

7) 1

2 clear
3 fiSTK
4 i

11)

WHAT DO

YOU THINK 35

4)-

8)

2

2
3

1

1

1

1

35
0
0
0

ENTER

IC HS

ENTER

13 - 18. In the following exercises, show what the stack will be after eath

key is depressed.

13)

15)

CLR

CLR

5

5

ENTER

X

131
14)

16)

I

23

CLR

CLR

5

[11 ENTE ENTER



17) CLR

18) ICLR1

[E 11 5
1.

4 j 'ENTERENTER

19) Express in algebraic form the calculation

1.4 -$

1

carried exercises
T

ift - 18. .(For example, exercise 13 is 5 + 3 = 8: )

20 - 26 Give the RPN keystrokes for the following computations. Then

calculate.

20)

22)

23)

25)

r.

(2

4

+ 3)4

2 .+ 3- (Hint:

21) +

ENTER' 2 [ENTER

(2

2

+ 3)(4

+ 3

+ 5) 24)

26)

2
-3-

(2

4 + 5

27) Show a second way to calculate exercise 26.

4

13i
4

+ 5-

+3)(4 + 5)(6 + 7)

28) Give a keystroke sequence that will fill the stackein the following

way

.

:1 29) Recalculate exercises 16 and 18 with the stack at the beginning of

e the calculation in the form of exert {'se 28 and omitting the

key. This exercise should show you that It IS NOT NECESSARY

TO CLEAR THE STACK IN ORDER TO CARRY OUT MOST CALCU-

T 6

Y

X

7

8

DISPLAY

CLR

LATIONS.

30) Use an RPN calculator to compute Lne answer to exercise 17 of

9iiction 1.3 (on page 1:3 - 5).

29
1
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1.5 Other Calculating Keys

We have s

1. 5 - 1

ied differences between algebraic-memory, AH

and RPN logics. Mo t of these differefces apply to binary operations,

that is operationlikhat "combine" two elements into one:-- Addition, sub-

traction, Multipliclition and division are the common binary.operations

oViLitt, rn C We -met in section 1.4 one other, yx, which we will

consider shortly.

The following operations are unary operations, that is operations

. that need only one element to process.

Jx sine CHS

x2 cosine-- 114T

. 1/x tangent FRAC T.

ox ABS

(We will introduce other unary operations such as log x, inx, and ex,

later. )

All citcplators process unary operations by RPN! The x-value is

keyed into the calculator and the function key is pressed.

EXAMPLE 1. 5-1 Calculate 577

Keystroke sequence

Answer: 7. 1414

3(0

1



In*

a

e

EXAMPLE 1.5-2 'Calculate sin-30°I

Keystr3ke sequence*

Answer: .5

H 0 SIN

1. 5 -

EXAMPLE 1.5-3 Find the reciprocal of 102 , 4

Keyboard sequence 1: 1 0,1 1/xj

Keyboard sequence 2: Ox2 1 /X

Answer: . 01

In' an cases these function keys operate on the number in the display or

X register. Note that it is not necessary to-Alepressthe ENTER key On

an RPN-calculator before using. them. For any unary (iiction f the

stack diagram is:

tow

T T
Z Z
Y --0Y
X f(x) -PX

The unary functions INT, FRAC T and ABS will be considered in the ex-
,..

ercises.
--.......\..

One important function that does differ between AH and RPN cal-

culators is exponentiation (raising to a power). This is a binary opera-,

tion because

requires the two input elements p and q.

Most calculators assume input to trigonometric functions ' to be in
degrees. We will also unless otherwise mentioned See Chapter 7.

4
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EXAMPLE 1. 5- )4 Compute 74

AH keystroke sequencer

RPN keystroke sequence:

Answer: 2401

'When using this

7 4

ENTE 4

1. 5 - 3

key, you wilj meet for the first time the fact

that calculators sometimesproduce only approximateanswers. In the

calculation of 74, for example: a calculator might display the answer

2400. 99'93. Now we know that 74 is an integer and we can find it exactly

by multiplying 7 X 7 X 7 *7 to get.2401. The error (of 4 0007 in

this case) is introduced by the logarithmic processing used by the

lator yx key. We will study this later. For now it is usually enough to

round off such answers to the nearest integer,

Exercise Set 1.5,

1 - 17 Without using A oalulivtor give the display produced by the fol-

,

towing keystroke sequences. Chef your results by calculator.

1 ) '

7)

8)

3

x2

sequence?
o

ENTER

x2

2)

5)

9

8.

F

icHs1

3) F1 1-1/;

6) 0 /x

What does the stack look like after Ms

-1 9)
14 1 ox

frx-

*'
Note thatthe keys *rill tell which logic is used. An AH calculator has
no ENTER key.

32



ENTER 11

10)

13)

15)

17)

7 CHsi x2

1 /XI x
J

10311

9 7

18 - 20

11) 1 2

f4)

16)

[1]

151

1/x

(ENTER

2 3

12)

1. 5, - 4

fy
2

FT,91 I x41

I

1 0')
I )1

1/x x2

di
y applying the functions to various Values, determine what the

following keys do'. Be sure to include valuktil/ce 7.65, -.3, -4. 72.

18) INT . 19) FRACT 20) ABS

21 - 26 Calculate each of the following Check,your result against the

answer given.

EXAMPLE: . 5'4 LIT

AH keystroke*:

RPN keystroke: 1 5

21) 85 'Ans. 32768

1 1

23) 1-6 7

25) 105 , 57 ,

0

Answer: 7.6458

Ans, 0. 2054

+1 7

7 erci

22) 1.23
3 Ans. 1.8609

1

24) Ans. 0. 0435
16 + 7

Ans. 218745 , (On some algebraic calculators you may'

find it necessary to use parentheses, around 57.

26 - 28 Now try your ha

26)
Wain 45°

343,

)

at the following monsters:

Note: the numerator is a product. Ans. 0.0001

27) INT (10
tan 60°) Ans. 53

Some AH calculators will not accept this calculation On them it must

be reordered to IF + 5, or it must be calculated as 5 + (ir? ).

(
33
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s,

377 os 100
281 Ans'. -83.4721

.13 - I
27

...

1.5- 5

t 4

The following two exercises provide useful shoit-cuts for computation:
(

29) Sometimes the wrong *amber appears in the display, FOr example,

. when you wish to calculate a - .b, b may already be &splayed.
'

How, cold you complete the calculation without st ting all over?
4 ,

ft

20) How can you calculate t starting with b in the disp ay?

)

f

e

7.

4
le

34
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1. 6 Problem Solving with a Calculator

1.6 - 1

With the power your calculator gives you, you may now attack with

confidence and solve some complicated problems. You will geed paper

and pencil only to recor inotes and answers. As you will see, however,( I
the calculator does not substitute for thinking. You are still in charge.

4.

You will need to
,

organize calclilations so that you can carry them out on

your calculator

and if your problem is one related to measurement

determine units for the answer and

determine accuracy

In this section we will not deal with the latter two important questions.

We will continue to report answers to four digit frounded) accuracy*.

EXAMPLE 1. 6-1 A simplified formtila for artillery range is

R = Vol sin A cos A
9. 8 <

Find the numerical value (with --)ut unit-st of R. when

VO = 3 1 and A = 30°.

Some calculators truncate answers rather than round answers. Truncated.
means that the rest of the answer is cut n'.. Thus 683.29587 truncated to
six digits is 683.295, the .00087 Merely'dropped. This is often called

"rounding down". You should test your calculator to see how it rounds. Use
quotients like 2/3, 5/33, and 50/33.

35



/ 1.6 - 2

SOLUTION: substituting

812 sin 30° cod, 30°R =
.. 9.8 -

,Calculation yields 42. 4618

Such a calculation is import-lent but straightforward. Others require an

experimental approach.

IP

EXAMPLE 1. 6-2 In EXAMPLE 1 we might wonder

what angle A makes Rfargest. (What angle of elevation

yields longest range?)

SOLUTION: We need only. consider the product

sin A cos A (Why?'

-Trying values yields

A sin k cos A

-30° 0.4330
40° 0.4924
50° 0. 4 924
60° 0.4330

_This suggests trying A = 49° (Why?).

`:45° .5

Trying other values suggests that this
is the beet we can get in the range 0° to 90°.

.Often it ;amplifies computation to use storage capacity of your calcula or'

to evaluate expressions in which letters appear more than once. In the

following example, we assume a celculatorthat has at least two storage

registers RI and R2. To store 5 in RI and 6.3 in R2 the following .

keystroke sequence could be used:

36
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This sequence

culators.*

5 STO 3 STO

of keys is appropriate for most alge

r. 6 - 3

I 2]
orRPN cal-

To recall the number in RI, you need only press

RC Li 1 1 I
!

. and in this case the 5 will reappear in the display.

4.--

EXAMPLE 1. 6-3. Evaluate x3. 3x4y + 3xy2
+ y3 for

x = 3. 7 and y = 8, 6.

111 SOLUTION. If you attack this problem directly,

you will be keying 3. 7 and 8.6 each several times.

You can save some of these keystrokes by first storing

x and y. Follow the program forthe kind of c1culator

you use.

On some calculators each register may have a' two-digit designation.

In that case to store 5 in R.01, would be keyed

5

'

ISTO1 [1&1 ri 1

37
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1RCL
11

7
1--

**
x

1

1111

.1,

R6L1

RGL

RCL

IRCL1

Lai

2

1
I

3

x

)(4

or

representing
x3

2

Ll

2

LI

3x
2y

3x 2

Lyxl L3_1 Y3

RPN
*

3

1. 6 - 4

yX..1

**

LA LI LI] Fri

121 L!LILI

RCL

1

You should reach the value 1860.867

2

LI

2

L2
3

LI...

LI

(RCL]

At each of these points the IENTER key is omitted because the unary
operation key substitutes for it.

**
Beware! Do not confuse the X and .Y registers with the x and y in
the polynomial. The key operates on numbe'rs in the appropriate
calculator registers.

38
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1.6 - 5

In solving complex problems like these you will need to be very

4, careful., Here are, some suggestions which may.help:

(1) Think through your computation before you start to key-numbers

into the calculator.

(2) Try to organize your corn' putation in parts such as terms of a poly-
.

nomial or the numerator and denominator of a fraction.
a

If you feel you will be lost computing the answer to a complex problem

in one series of.keystrokes, take ,it.part by part, recording partial

answers. You may then combine these into a final solution.

(4) Sometimes (as you will see in the exercises) a44ebraic simplification

of an expression to be evaluated will also simplify computation.

Exercise Set 1.6
Vo

2 sin A cos A1- 4 Evaluate'tbe formula R- 9. 8
for R using the

given values of Vo and A. /
1) Vo,-= 200, A = 40° 2)' Vo = 100, A = 40°

3) Vo = 100, A = 50° 4) Vol-375, A = 90V

(You may wish to think about the tc..-ults
l..>
of exercises "1 - 4 as they re-

late to the physics of projectile range. )

5 - 9 Using one of the two conversion formulas far Celsius and Fahren-
.

heit temperatures,

C = ,r) (F - 3i) PC:

39

9
5

a

32
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answer the, following:

5) C = 1006, 'find F

7) Change 68 °F to C

1. 6 - 6

.1*

6) Convert 32°F .C.

'. 8) Change 98.6°F to C.

9) ,Find by experimenting when F and C are the same.,
.. , , .

10) Nowcheck your answer to exercise 9 by algebra. (Set F` and
. . . -

C each equal to x in,-,one of the two formulas and solve for x. )
t_ r i

f -14. A formula.for triangX area that you '4a,(111 be-able to derive
.

later is
t A =

(s1

Find A, given the I'd/lowing values:

s3 sin,* 2

11) s = 2., s3 = 5, Az =
1

12) s = 10, s
3

='8, A2 60°

13) s = 3. 72, 83 = 5. 8, A2.= 38° 14) s
1

= 147. 3. s
3

= 62. 1. A2 = I2o

15-19. If an object is h meters above the ground, the tuns, t, in seconds,
2h

that it takes to fall to the ground is given by the formula t = 9. ?
.

Find t When:

15) h = 147.2 16) h = 3472.13

17) h = 1.23 18) h = 43. 278

6.) Solve the'formula for h and use your new formula to find h when

t = 10.

20-23. In a right triangle whose legs are a and b and whose hypotenuse

is c, you know that c = 1) a 2 ,+ b 2
.

* . .
.

,

iAverage hnman body tempetatur.
. ,--,,i,

e.

,-, 9-

,A
..... L a .
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r

ti

Find c when:"

21) a = and b =

22) ,a =,10.3 and b = 11:7

C6 - 7

21) a = 10.35 and b = 15.72 ---rTh

01, 23) a = 2.3 and b = 18.9

24-30. Evaluate when x = 3.7 and y = 8.6.A Store these values fdr x andly

0 4
24). x2 + 2xy + y

2 2' (x + y)2

26) x2
-1--y

2
I 27) (xi y)3 ,.

028) What identity to your answers in exercises 24 and 25 support? -

29) Wiat do, your answers in 24, 25 and 26 suggest?

r

.1

example 3 'on pages 1. 673 and 4:auggest?

fi.

4.

V

1.0

4

v

N

' 30) What* idelttity does your. answir to exerc'ise 27
'14

and the answer to
o

1i

*

wo
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1. 7 .Programming Functions: 1

1.7 - 1

In working the exercises of le7tic7; 1. 6 you should have

found the calculations repetitious. You were following similar routines

over and over, with only the numbers different. In this-Vection we Will

develop a short-cut to reduce such work..

EXAMPLE 1. Give a keystroke routine that will

AH

h; then

2

start with a given value of h and .calculate t

by the formula\

SOLUTION

9. 8

RPN

key in h, then

ENTE

2

9

E

X

to,

Notice that office the keystr es have been worked out it requires

no knowledge of the function t iollow them. With these instructions you

could give yOur homework exercises, to-an elementary school aged sister

or brother to calculate for you. For example, given the h value 10.

they would key-__ 1

giving the resulting t

and then the keystrokes for your calculator,c

1;4286.

I 1 42
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1

II

A

c. f 1. 7 - 2

Still better, you can assign this routine to your programmable

.. calculator. Here are the general steps you can uselo Xccomplish

this:

t
(1) Set your calculator- or computer to record a program.

(21 Key into your calculator or computer the calculation steps
ft

.

'(along with any instruction steps_ necessary toyour particular

calculator. )

(3) Set your calculator or computer back to calculating mode.

(4) If necessary reset your calculator or computer to the begin-

4, 5, and 6:

Each of the many calculator or computer models operates differently

f.;

ning of your program.

(5) - Enter your given data.

(6) Run the program. . .
0--

For additional exercises of the same type, you then merely repeat steps
/

so it is not possible to lisj 11 the special instructions required to carry out
...? .

the six step routine wehve just givel Because they suggest the kinds of I,

4.

1,4
..special differences you will meet on calculators and computers, we offer

. II
three examples here. You should study thern.to see their fOr. rn, but you

Ilt. 1
should concentrate on the specific routines for the calculator or computer

.--

you will be using. Recall that we are programming the calculation I
/1

..,

.,
. 8

\) 2h
9

, .
4 3 I. .

I
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1.7 - 3'

TI-58 (a typical AH programmable calculator)

1. OFF - ON This clears the calculator of previous programs.*

LRN LRN sets this caleulator to record the program.
The display is 000 00

2. 2 These are the calculation steps. (See the
1$1,. SOLUTION to EXAMPLE 1 on page 1. 7 - 1.

9

IR/S

1
8 As you depress each key the calculator display

will move to a new step number
00-1 00 up to 008 00.

R/S is required to stop the program and dis-
play the result of the calculation. RST will
return the program to 00.

ral

3. .[LRN This key now retprhs the calculator to normal
operation. The display is 0

RST P.ST sets the calculator to run from step 00Q.

5. Key

6. R/t then activates the program. When the cal-
culator stops, fre display will give the t value.

To find additional,pairs (h, t), repeat steps 5 and '6. By inserting the RST

after the R/S at the end of step 2, .we don't need to repeat 'step 4 each time

We run the prbgram.
,

Note: On this. calculator RST plays a different role within a program

(as it step 2) and outside (as in step 4). Within a program RST returns they

calculato'r to 00 and contines to run. Outside a program RST returns the

calculator to 00 and stopsthere.

Some calculators, usually with a C designation - as TI-58C - have/
continuous memory and must be cleared by other means. See the owner's
manual. 4.



HP-33E *(a typical RPN programmable .carculator)

1. OFF - ON

2.

2

PRGM

(ENTER t

J

19 I

......***

El

3. RUN

4.

5.

6.

Fil

8

(X-

RTN

Key in h

fills]

ef

A, 1. -4

This clears the calculator of previous pro-
grams.

1
PRGM_ sets the calculatoi-to record yclur
program steps. The dispity is 00.

Thepe are-the calculation steps. A. you de-
press each key the disp ay records the step' - -,

nyrnber and, the local° irow - column) of
the key(s) dep;essed... or .example, after
ENTER is pressed 31 is displayed:

Jo 6 is the step number, 4-31 the location
(row 3, key 1) of ENTER on the keyboard.
N-ofehow the list two keys are merged into
one step 08, 14 02. this saves program
steps.

1

,

'c

;

i NI

The calculator is now returned to normal'
operatiqn, the display is 0. 00.

*

The RTN key setts the program back to step
00.

_ ,
,

I This activates the program. On this calcu-
lator we did not have to key mother R/S
Into the program because all unused program
steps arepre-loaded with-steps that return
the program to step- 00 and stop it there.

To find additional pairs (h, t) rep-Cat s tepli and t6. On this calculator it

is not necessary to repeat step 4 because the calculator itself resets to
f

step 00 at the end of a program run. ,,

r-
*

On this calculator, as on ny others, many keys have two or even three
fs. Here the yellow key assigns the second role rx- to the

key. The blue fl key would have assigned x2 to the same key.

45 ,
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1. 7 - 5
/

TRS-80 (a typical co mputer programming in BASIC)

... ... .. .
1. . OFF - ON A prompt, > is displayed.

2. , ENTER Thisqreparet your computer for
further instructions: You must press

4' -' EtITER at the beginning of your program
.. .

and after each step.
... 4 .., -
3. AUTO - This places you in automatic and.numbers

4.

5. BREAK This takes you out of automatic and puts you
in run mode. s./

..
.

-
4i

,the steps in yoUr pnogr'ani. It first 'prints
10, ready for your program.

. 4-.

10 INPUT H , These are the calculation steps.
Eath.time you finish a line and

20* T. = SQR (24J-I/9. 8) press ENTER the computer .

goes to the next line and prints
30 PRINT T he next number

6. Type in tlie value o

7. Type RUN This activates the program.

To find additional pairs (h, t) repeat steps 6 and 7;
41*

You should familiarize yourself with the procedures for entering

and running programs, but the more important task is developing programs.

Here are some suggestions about litw to dothis:

(1) Remember that the program merely records what you would
, .--

have done in a calculation that isenot programmed

I(2) Think of your calculation as always starting from the value(s)\ , -

I
Ark that change in the computation.(In the example this was h.. )

.

,

II
. .

46
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1. 7 - .6

(3) Key into the program the steps following (and not in ,-
A

cludi4) the step that keys your starting value (see suggestr

2) intarthe display. (On an RPN calculator don't forget ENTER

when it is necesiary.)

(4) Be sure, if your calculator or computer requires it, to

complete your program with R /S

..1 will atop to diiplay the results.

t

Exercise Set 1.7

so your calculator or 'computer

.

1 - 6.Key into.our. calculator or computer a program to find t, given

h, -by the formula InT
. 9.8

Then calculate t for the follcwing h values-

11 15 / 2) 100

3) 4000 4) 10, 000 ..

5) 8840 (m in ht. of Mt.' 6) 1609 (m lima mile)
Everest) .

%

...
7) Develop a keystroke sequence Co change any Fahrenheit tempera-

ture into Celsius by the formula , .

5C =
9

(F-32)

(Don't forget to start your calculation from F. )
.

8-12. Program the calculation of exercise 7 and use it to convert the fol.

lowing temperatures to Celsius:

8) 0° F 9) 90° F

47
/
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"........

1. 7 - 7

10) 50° F 11) -40° F
0

12) By experimenting, find when F = 2C, that is when Fahrenheit

temperature is twif e Celsius tempelaiure.

/

13) The sales tax in Erie County, New York is 7%. Develop a keystroke

`sequence that will calculate the amount of this sales tax. (Do not

bother with roultding your answer. )

14.-18. Program the calculation of exercise 13 and use it to determine sales

. tax on the following purchases: ,.

14) $500 15) $45.3

16) $299. 95 17)

18) By experimenting, find a pqrchase price that will give a sales

tax of $1. 00.

$2. 79

t

II s

i If

b

^ C.
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1. 8 - 1

Programming Functions: 2

In section 1.7 you learned to prograrruyour calculator or computer

so that it would carry out computation routines by a single keystroke. In

that section you were restricted to singleinput-single output routines.

Now in this section you will learn how to handle more than one input or

output.

On a calculator the key to this problem and the key to press is:

This powerful key plays the following important roles:

1. Whenth, calculator is_in operating mode, it'ejther starts

a program if the calculator is idle or stops a running program.

. When it is keyed into-a program it stops the program either

to-receive information br to give information.

We will consider how this works by means of examples.

EXAMPLE 1. 8 - 1. Develop and run a ogram to evaluate

c for entered Values of a and b,

C =

49
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SOLUTION 1.

by .TI 58

OFF - ON

by HP 33E

OFF - ON

LRN- a ,would be keyed
before the

1 program started

PRGM

X? I

I

g x2

*. IR/SI Here the calculator
iststoiped to re-
ceive b.

LRN

* IR/SI

2:j I x2_I

+
I

I f

RUN

Here is how these prograins would be run for 'a = 5, b = 12.

RST

5 R/S

Resetting' the program
to 0.

. Enter 5 and start the
program

The first part of the program runs until it'reaches

g

5

RTN1

1. 8 - 2

(
at the step marked in the. program.. It stops with

the display reading 25. ,

R/S Enter 12 and 'restart
' I I

1 R/S

Either calcUlator will now complete its prciglam and display the c value 13.

6 50



You will develop other ways of carryin

inpUt'program in the exercises.

multiple output.

EXAMPLE 1.8-2

1, 8 - 3

t this kind of multiple

We now consider a problem involving

j
Develop a program that will calculate

and display sales tax (at 7%) and then total cost for given
v

purChase prices.

TI 58

OFF - ON* iLRN

STO 0

1

1

01

Stores purchase price

Calculates sales tax

Stops to display tax

RCL 0 1 Adds on purchase price to give
total cost.

Arw

Running the program for a $92 purchase

'RST 9 2 R/S

The calculator runs to the first

to display the sales tax $6.44.

R /S

IR
s- and !tops there

The calculator completes the program and displays the total

'cost $98. 44.

*.
On this alculator there are other ways to cliait
progra to 0, but we adapt this simple rirtce
may be keyed right "over" old ones. for the new

yrograms and reset the
aure. In faCt, new programs
stepis replac/ the old.



/
IV

HP 33E
=

-N w

1,,,8 - 4

Storage could be used as in the TI-58 solution but instead we utilize

the operating stack to solve this problem.

OFF - ON*, PRGM

ENTER; Now the purchase price is in
, Y, and Z registers.

Running the program for a $92 purchase

9

RTN

f2
R/S

(or iyi [ii 1%1),
Now sales tax is in X, pur-
chase price in Y.

Stop to display sales tax

Adds sales tax and purchase
price.

Resets to 00

Now the calculator displays the sales tax $6. 44I
it /S

*

On this calculator als

The calculator completes the program and displays the
total cost $98.44,

the program to 00,
new programs may be
place the old. .

r

there are other ways to clear,programs and reset
t we adopt this simple procedure. In fact again

keyed right "over" old ones for the new steps re-
Itr--

52 1
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T RS - 80

ON, ENTER; AUTO

.10 INPUT P

20 T = .07 * P

30 C= T + P

4

0

. ; - 1. 8 -PS

You are now ready to write
your program.

Computes tax

Adds tax to purchase..

40 PRINT P, T, C Prints purchase price, sales

BREAK

Running the program fdr a $92. purchase ,

92

RUN

The microprocessor prints

92, 6,44, 98744

Exercise Set 1.8

tax and final coat.

/".

1 - 4 Program EXAMPLE 1.8,11 into your calculator and use this;

program to find

1) a = 23, b

3) a = 45, b

c for the following:
.

= 264 2)

= 336 4) a = 7, b = 24

5 - 9 For a = 45, there are five other values of b that result in

Pythagorean triples, that is results for a, b, an4 c\. alt in integers.
, I 7

w.



1. -

Find the b and c that completes the = 45) triple for b in

each of the following ranges:

5) 25 < b < 30 . 6) 60 < b < 65

7) 105 < b < 110 8) 195'< b < 200

9) 1010 < b < 1615
.

10 - 15 Program EXAMPLE 1. 8-2 into your_calculator or computer

and use this program to find sales tax and total cost for the following

purchase prices.

10) $34.95 11) $1.67

12) $2995 13) '632.50

14) $99.95 15) $100
4

16) - How could you modify the program of EXAMPLE 2 if sales, tax

went up to 8%? Clearly you can start over and reenter the entire

program, but you may wish to experiment with calculator kepi

in LRN or PRGM mode-to make the necessary key chkrige.

You will need to determine how the folloing keys work op your

Calculator:

i .

*

i

ll
.

On calculators that display four decimal digits (Like the HP 33E) you
need to exercise care here. Such calculators probably do not round
22 but either round down (truncate) or round to the nearest value.
Ygur best, procedure is to reset such calculates to display more deci-
mal digits. On the HP 33E for example, to set three decimal. places

in tly display press

L.

FIX

54
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e

(BST

wand on the TI 58

S

single sac

back,step

fr

insert

rt

4,2

delete

,

1. 8 - 7

,41
17) (for algebtaic/talculators or dOmputeri only), In EXAMPLE

1. 8-2 you had to store* the purchase price because it* lost

whigeyou calculate sales tax. Show how you can avoid storage
. .

by calculating total cost from the sale, tax.

price is p, sales tax is . 07p and total cost is 07p. DeteA.
fr

Itiiurchase

mine the number you must multiply ;frit07p by to get 1. 07p. )

18),.......fifippose you were a hou'seholder in an area where differencorn-
IP'.. .9

. .
,

munities iti which you shopped chargie\differentisales taxes.

4

r.

This is is fainy common near state or even county boundaries. )

s,Develop a sales tax - total 40st program so that you can enter list
, la

price and then, lesfax rate to produce sales tax and total cost.

(Hint: ani1asy way to do this is to Use program storage.,) 'Tee
,

your progAtrn to complete the following table:

A



ft

a

1. 8 - 8

o

suit

overcoat

list prie tax rate tax cost

1 17 . 95

c 84, 50

r
6%

8%

. _

shoes 31.45 7%

haf a 18. 50,4 6%

TOTALS

I

I
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1. 9 Programming Algorithms 1.

1.9 - 1

In sections 1. 2`to 1. 8 we utilized articular calculators to solve

problems. In those sections we introduced some ideas that are quite

general and apply to programmable calculators and computers Of many

types. The method, of entering and running a program to evaluate an

often-repeated calculation is, for example, common to all progerrimable

calculators and computers. Ai the same time manylof the ideas were

specific to the particular calculating device we used,. In this category are,

for example, the different operational Ptelicems - AH and RPN - the speci-

fic means of switching into program mode - PRGM or LRN - and the key
77.

for resetting the calculator to run through a program again - RST or RTN.
Jo

From now on we wish to provide more general instructions which

will apply to aul calculator or computer.- It is then usually quite easy to

translate the given procedure or algorithm into a keystroke routine for your

particular calculator, microprocessor, or computer.. We will work through

an example to show how an algOrithr4s arrived at and then how it may be

translated into specific routines. In the example and in subsequent-work

you will be led to develop algorithms.,. Translating them into keystroke

sequences will be done with the guidance of your teacher.

EXAMPLE 1. 9. 1 Find the real and imaginary coef-

ficientb of the product- !3 + 2i)(5 + 7i)

SOLUTION: By standard algebraic techniques

we have p
57



(3. + 21)(5 + ,7i) = 15 + 31i + 1412

and, since 'i2 -1

15 + 31i -, 14 = 1 +'31i

Real coefficient: 1

Imaginary coeffiCient: 31

9 - 2

4.

Find the real and imaginary coefr

ficierkts of the product (a + bi)(c + di)

SOLUTION:. (a +' bi)(c + di) = ac + adj.+ bc i + bd i2

= at +-(ad + 'bc)i - bd = (aC bd) + (ad + bc)i

keel coefficient: ac - bd

Imaginary coefficient: ad + be

Notice how the second example generalizes the first. It alsp suggests an

algorithm for calculating the real and imaginary: coefficients of the product

of any two complex numbers, a + bi and c + di:

I

EXAMPLE 1. 9-3 Multiply two complex numbers:

diveh a, b, c, and d. Finding e and f Where

e +.fi = (a + bi)(c, + di):

soitiiion: Notice that each of the numbers a, b, c, and

d is used twice:

f

/first use of d
ac -

second use of d

Therefore we need to store these numbers in memory.

s
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',,,i.
MULTIPLYING TWO COMPLEX NUM.PERS

1.9 - 3'

1. Remember a, b, c, and d. (Ina computer, this could be donei.
with LET commands, in a calculator with keys such as STO.")

2. ' e 4 ac - bd; display the result*

3. f 4.- ad + bc; display the result

4. STOP

A goOd algorithm has certain features:
...

variables are initialized (or introduced)

r

o falculations are made or decisions aretreached, based do

the voluesof the variables;

all possibilities are accounted for

o inforMatfon is displayed or printed

o the process has a way to stop.
z

A verbal algorithm is just an abbreviated statement of the steps

we usito solve a problem. For us it will play a role between a complex

problem and a keystroke sequence for our particular calculating device.
AO

For the algorithm MULTIPLYING TWO COMPLEX NUMBERS, consider

now how the steps could be translated intq program keystrokes.

_,

* -'

the arrow notation means "replace the value of ... with the value of
. " . Thus, e 4- ac - bd means replace the value of e with the value
of ar - bd. 59
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; 1 . 9 - 4

1. Remember a, b,' c, and d.
s

TI 5.8 HP 33E TRS-80 ,r"'l
* ,

ST9 00 (Ro = a) STO 0 INPUT A, B,' C, D

RI S

STO 01 (R

R/S

STO = c)

RIS

STO 1

R/S

STO

R/S R/S
,

STO 03 (R3 = d) STO 3

2. Compute ac - bil; display the result.

RCL 00

RCL 02

RCL 01

X

RCL 03

, RCL 0

RCL 2

X

RCL 1

ReL 3

X

R = A*C-B*D

PRINT R

R/5-

R/S

We will use the notatidn Rn to denote storage register n
41.
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S. Compute ad + bc; display the result.

TI- 58

RCL 00

RCL VOW

RCL 01

4 X

RCL 02

R/S

4 Stop

HP 33E

1. 9 - 5

TRS-80

RCL 0 I = A*D + 13;`C

RCL 3 PRINT I

X END

RCL 1

RCL Z

X

Last c6mmand in 3 Calculator automatic- Last command in 3
ally resets to 00 and

(RST)*. stops

Exercise Set 1. 9

1 -.4 What do each of the following verbal algorithms calculate?

1) (1) Enter a, b

(2) Compute )a.2 +-112; display the result

(3) Stop

2) (1) Enter F'
5(2) Compute 9 (F-32); display the result

(3) Stop

**including RST in your program, you will not have to key this before
each run; however, you will still have to key RST before your first run.



(1) Remember p

(2) t 4 .07p; display t

(3) .s -4-- p + t; display s

(4) stop

4) (1) Remember a, b
it

(2) c 4-- a2 - b2; -display c

(3) d-c-- 2ab; display d

(4) stop

Mb
1.9 - 6

Note: We will use the
notation x4-- to mean
compute x from what
is to the right of the
arrow.

Hint: Ho* is c + di
related to a + bi?

5) What is usually the last step in a verbal algorithm? (We will

see exceptions to this later.)

..

6 - 9 Often we wish to replace dne variable by some function of that

same variable. Thus we might use X4 X+ i to mean "replace x

. by x + 1" or "make x one larger. ' Translate each of the following

into statements beginning "Replace.... "

6) 2x 7) 1/xx.4-- x 4--

8) 5, 9)x -4-- x 4--- x - I

)4

10 - 12; Each of the following verbal algorithms lacks one of the features

of a good algorithm (listed on page 1 9-3). Tell what that feature is and
. -
give a stepto make the program complete

10) (1) Enter x

,(2) x 4 x + 1

(3) Stop

.., 7
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1. 9 -* 7

11) (1.) c a + b, display c

(2) stop

12) (1) Enter x, y
t

(2) z 4- x + y, display c

(

- 18 Make up a verbal algorithm that will:

13) Find the area of a rectangle given sides ,t and w.

14) Find the perimeter and area of an equilateral t ianglegiven side

15) Find the slope of the line between (a, b) and , d).

16)

17) Find the distance betweeitwo points (a-, b) and (c, d).

18) Find the arithmetic mean ( x+v
) and geomet(ic mean (Oicy) of

Find the sum of two rational numbers a/b and c/d.

two positive real numbers x and y.

19) Using your algorithm from 17, write a program that will display

the distancebetween any 2 point-s-in-th-e-coordin
1

te plane'.

20) Find thp distance between (-41,5) and (17, -13) using your algorithm

from (18), write a program that will display the arithmetic apd

geometric4rnean for any two ;:ositive real numbers. By co paring

determine a relation between the geometric and arithmeti mean

of two positive real numbers.

Save these algorithms for further works in section 1.13.

63
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1. to rammi : Loo ss .d Traces
ata.

Many algorithms con loops; that is repeated series of steps.

The long division algorithm you earned in fourth or fifth grade is an -S.s.t":"'"
Agarithm with a loop. You.will r call that this (non-computer) algorithm

goes something like this:

1. Divide

3.

4.

5.

6..

2
23)7183

2

Multiply 23

Subtract

4876
46

23141T76,
46

2
2

Bring down, (the next digit) 23 48.76
46

27
.21

(same as 1) Divide 2) 487i$
46..
27

21
(same as 2) Multiply 23)--48761

46
27
23

7. (same as 3) Subtract

and so on. Rather than repeat the same steps over and over'this algorithm

is expressed easily by a loop.

4.

1. Divide
2. Multiply
3. Subtract
4. Bring down
5. Go to 1.

A

64
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1.10 - 2

In a similar way many computer-calculator algorithms and pro-.
Y

grams have loops to repeat steps or keystrokes. In the proces8 taual)Y

tILM.lue(s) of one or more variables are changed and the steps arerSi-

peated.

EXAMPLE 1.10-1 Develop a verbal algorithm to generate
S

successive powers of a + bi, 'fat given a and b. Thus we

want to calculate: (a + bi)1 , (a + bi) 2
, (a + bi)3, (a + bi)

4
,

e', each answer in the form e + fi.

SOLUTION: _We can develop this algorithm by modifyingthe

algorithm of example 1.9-3. We "initialize" by setting

c + di (of example 1. 9-3-).= 1 + Di

1. Remember a and b.

2. c 1 and d 0
.

e 4 ac - bd; e Recall these stepta
from exercise 1 9-3

4. f ad + bc; display f

5. If the power is high enough, stop

6. c4--e and d 4- f

.--. 7. Go back to step 3.

Tesee how this algorithm operates, we develop what is called a

trace, a record of the calculation through successive steps.

EXAMPLE 1.10-2 Develop a trace for example 1.10-1,

when a = -2. and b = This will generate successive

powers of -2 + 3i.

65 ,



1. 10 - 3

First, set up a table with all letters represented in the al-

gorithm:

di el
I

f

Now center values of the program and follow the algorithm

steps:

1. Remember a and b.

a b c d e

-2 3

2. c 4- 1 and d 0

a b c d e f

-2 3 1

3. e ac - 1;d; display e

a b c d

-2 3 1 - 0

4. f 4.= ad + bc; display f

a b c d e= f

- 3 1. 0 -2 3

5. if power is high enough, stop

6. c e and d 4,- f

a b c d P

-2 3

..z 3

O

Ft

tb

81.

Note: e (-2)(3) - (3)(0) ,

Note: f < (-2)(0) + (3)(1)



J

7. GQ back to step 3.

e ac -.bd; .display e
r.

a, b c f

-2 3

-

A-

-2

.

2'

3

...),2
-5

37

L)

f ad + bc; display f '

1.10 - 4

Note: e 4 ( ..2)(- 2)- (3)(3) = -5

. ....-Z" ....0"

-2 3 -5 -12

Note: f 4(-2)(3) + (3)(-2) =

We have now calculated (-2 + 3i)2 = -5 -1Zi--

5, If the powe'r is high. enough, 'stop

6. c e and d 4 f

a d e

2 3

-5

/0"

.0"

-12

7
-5 -12

vor

Of course in developing, a trace, the table would only be drawn,,once.

Through -(-2.+ 31)4, the cofnplete trace would appear as:

a c d 4 e f

'-2 3 1 0 3 (-2 + 301 = -2 + 31
2

3 -5 12 + 3i) = -5 + 121(1:2

...5 '12 46 9 + 3i)3 = 46 + 9i

46 -119 120 3'04 = -119 + 1201(.;.2 +



4

1.10 - 5

{Quite often a Vag e step like ste-pmade subject to automatic

control.

. -

EXAMPLE 1. 10-3 Develop an algorithm that calculates

+ bi)11 as e F f i for given. a, b, and n.
1. Remember a, b, and n.

c 1, d 0, k

3 . e ac - td

4. f A- ad + bc

5. If k 0.1 display e and f and stop

6. c e e, d f, and k

Go back to step 3.

You will be asked to develop a trace for this example in the exercises.

Exercise Set 1:10

1) Develop a complete trace for (1 - sing the verbal algorithm-

of Example 1:10-3. Note that initial val es are a = 1, b = -1,

n = 3. ,Thuil ,after step 2 your trace will be:

a n k c d e f

1 -1 2 1! 0

2) From you trace in Exercise-1, give the. valu of

,3) Check your answer in Exercise 2 by multiplicatio

4) Develop a complete trace for (21) 4 Hint: ate= 0, b 2, n =

I,
GS
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.w

4

f

sr_
1.10 - 6 .

. "*1

3
5) Develops acomplate trace for (-1) . Hint b = P.

6-10. In-these exercises you are asked to translate E3ample 1.10-3

6)

ver,a1 algorithm steps into calculator or computer steps for the

device you have available. ExerCise 6 is worked-out as an exarriple.

kernel-Tiber a, b, and la (Algorithm step 1)

HP 33E: STO 0, R1S, STO 1, STO 2, (R0 =a, R1= b. R2= a)
, 4

irk

TI 58: STO 00,.R/S, STio 01, R/S,-STO .02 (Roic: a, R1= bi R2= n)

-TRS-80: INPUT A, N *44

7). c d 0, ke. n-1 (Algorithm step 2)
^A,

For calculators use R3,- c .= d, R.
5

= k. To calculate and store
41

k use the ,se uence:

-HP 33E: 3. C3 2, (why ?'), STO `"S,

TI 58: RCL 02,1why? ) 1, =, STO ,05

TRS-80: K = N -1

8) e 4-- ac- bd (Algorithm step 3)

For calculator's use R
6

= e

tit
9) f_4 ad + be (Algorithm step 4)

For Calculators use R f7-
c d and k k- 1. (Algorithm step 6)

. )
-11r Go back to step 3. /(Algorithm step 7)

, Beware: Algorithm step 3 is probably not pro g m step 3.2n
(For calculators use GTO the appropriate step n ben. ''or micro-
processors us, 6,0 TO the appropyiate line number )
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1._11 Decisions, decisions, decisions 1

In the exercises of section 1. 10, you translated several verbal

algorithm steps into program steps or key-strokes. In doing so we
A

carefully'avoided the program step for looping and the program step for-

making a decision. You will be asked in section I. 12 to refer to the.,

operator's manual, for your particular device to see how you would program

loops. In this sgaion we address the problem of making decisions..
j-

Computers and now calculators are ofte referred to as "thinking

machines." You may already have been impressed at the ability of your

device to "think" its way through complex calculations. In fateyou Must

admit already that your calculator is "ahead" of you: that is, it can do
4 .

1things you cannot do on your own, For example, your calculator can cal- 1

culate n an instant ihesi ne of 37° to many degits of acc4uraty. At this
II

point i our education you probably cannot calculate that value at all!
.

mat im1 ressive thing your calculator can do is make de-.. 4

*cision= In doing this it comes closest to mirroring (if not truly duplica-

ting) n thinking. Of.4ourse tie decisions yout-calculator can make

.are "simple" ones. Still many psychologists claim that all decisions, even

the t-complex ones, may be reduced to similat simple decisions.
6

I * .' .1"..
4 . Each computing dettce has its own special Way of pr.ocesshig dal sbions.

You will b d in the exercises to reviewiotar operatoi's gikidb"Vo de-

termine how your bwn works. .Here we describe two methods, the first

t) =
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al

I
14 I 11 - 2

common to many calculators, the s cond to many microprocessors
. .

and 'computers .

DECISION METHOD I SKIP ON FALSE

N (This is a common calculator decisionlmethod. )

The calculator has one or more decision keys. The commonest

one is_

cision keys are:

often labeled without the question mark. Other de-

lc = y ? x = t ?

x.> 0?

x ? 0 7

x # y 7

x > y 7

x 4 y ,

x # t ?

x .>.: t ?-

The latter keys save calculator arithmetic but two such keys would be

sufficient. Vi

In a program the way those keys operate is amazingly simple:
..

(1) If the answer to the question is ,TRUE, the calculator continues on to
........4 0")

the next program step
.

(2) If the answer to the question is FALSE, tke-calculator skips the next .

program stop.. , ir

EXAMPLE. 1. 11-1 In the pr og:-am sequence
,

.--

09 x > 0 ?
10 R/S
11 1 /x
1,2 R/S

0

it

I.

What would happen if th x-register
.
(the display) after step 8 was (a) 5,

(b) -2, or (c) 0.

71

4W

It 1

It



SOLUTION:.

(a) x = 5, x >0 is TRUE so the calcutitor would stop and

display 5.

(b) x = -2, x >0 is FALSE so the calculator would skip to

step 11, calculate the rec4p,r)ocal, -0. 5 and (in step 12)

stop to display that result..

(c) x = 0, x 00vis FALSE so the calculator would skip to

step 11, try to calculate the reciprocal and fail, halting

the calculator to display an error message.

e
DECISION METHOD II CONTINUE ON FALSE

(This is a common compkaer decision method.)

The more sophisticated computer languages usually have IP ...
THEN statements (as well as more complex decision statements.) Here

again the processing is very simple:,

(1) . If the answer is TRUE, carry out the instruction follfwing THEM

(2) If the answer is FALSE, go on to the next program step. 0

EXAMPLE 1. 11-2 In the program sequence,

09 IF x > 0, THEN (GO TO) 12
10 x = 1 /x7
11 PRINT x

-12 STOP*

What would happen if the X-register at step 8 we, re (a) 5, (b) -2, or VI 0.

In marry computers x = 1 /x is machine language for x +-- "1 /x, that is
replace x by l/x. This is a different (and algebraically incorrect) use
of the = sign,

72



SOLUTION:

(a) X= 5, the computer would stop.

(b) X = -2, the computer ykd go on to step 10, calculate
Wit

1 ri = -0.5, print this aline in step 11 and stop at step 12.

(c) X = 0, the calculator would go on io step 10 and at that

point stop to give an-error message.

Exercise Set 1.11
t

1 - 6 Determine what the calculator would stop and display in each case

proceeding through these program steps when the value at step 5 is as

given:

}) x = -2

4) =

06` x >, 0
07 GTO 10
08 x2
09 R/S
10 1/x
11 R/S

2)

5) x= 100

x =5

No,

3) x =2

6) x = 0

7 - 1.2 Determine what the ca,lculatcy would stop and display when thefi -

value at step 5 is as given:
.10

I'

06 a IP 0
07 GTO 09* Hint: The results

.08 x are not all the
09 1/x same as exercises
10 R /S. 1 - 6.

By this instruction we mean'here for thsr calculator to jump to the step
nurnlier given (not to the label given).
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7) x =--2 8) x = 5 9) x = 2

10) x = -1 II) x = 100 12) x = 0

13 - 18 Determine what the computer would print when the value at

step 5 is as given:

13) X= -2

16) X = -1

06 IF X 0 THEN (GO TO) 10
07 X = X + 1
08 PRINT X
09 STOP
10 PRINT -X
11 STOP

14) X = 5

17) X = 100

15) X = 2

18) X= 0

19 - 24 Determine what the computes would print when the value at

step 5 is as given:

19) X = -2

06 IF X >. 0 THEN (GO TO) 08
07 X = X + 1
08 PRINT -X
09 STOP

20) X = 5 21) X = 2

22) X = -1 23) X = 100 24) X 0
I

25 - 26 The following is a verbal algorithm for a pocket calculator.

10 Empty all your pockets

20 AF-- 0

30 Take a piece of paper and number it A

40 If you have no empty pockets then (GO TO) 80

50 Place paper numbered -A in an empty pocket'

741t

This algorithm was submitted by David Lloyd in the September, 1978
issue of a British journal called Mathematics Teaching.

(4



60 A A + 1

70 GO TO 30

80 Read thi piece of paper

90 STOP
a

25) What is the decision that is made')

26) What does the algorithm do?

75



I, 12 Your Own Calculating Device
,

For anyany programming you wish to do it is extremely important

that you know the quirks and idiosyncrasies of the calculator, Micro-

processor, or computer you are using. To familiarize yourself with

your particular device, your best recourse is the operator's manual

or programming guide for that device. _Even if you feel very familiar
q

with the calculating device you are using, you will wish to consult such

a guide in answering some of the following questions.

Exercise Set 1.12

Answer the following questions for the specific calculating device

(or devices) you will be using as you study this text.

1) Is your device a programmable calculator, a microprocessora
4.

a computer terminal? ,

Ic.2r FTDoes your device calculate in A or RPN o a third operating
t

order?

3) What switch turns your device on and 'off ?

4) Are programs "lost" when you turn your device off?

5) ( If your answer to exercise 4 was "yes", how can you retain a pro-

gram so that you don't have to work out the details the next time you

need it?

6) Does your devi have printing capability? If so, how do you signal .

it to print?



1. 12 - 2

7) How many storage locations does your device_have? How are they

named?

8) What happens if you have a number (say 5) stored in a register and

then store a new number (say 7) in that same register?

9) Does your e have register arithmetic or-storage arithmetic?

That is, ou modify.whatis in a storage register without re-

calling v ue, operating on it, and restoring it. If your device

has regist r arithmetic, describe how you would use it to

(a) add 3 to R5

(b) subtract 2 from R
4.5

(c) multiply the numbers in RI and R2 and store the product in R2.

(d) divide the number in R
4

by the number in R3 and store the quo-

tient in both R3 and R .

4

(e) multiply R5 by zero. How else could you accomplish this?

10) HoW do you instruct your device to accept a program?

11) How do you change,from program to calculating mode if it is neces-

sary to do this?

12Y Does your device }lave a way of labeling programs so that you can

enter more than one at a time?
/

13) How do you set your device at the beginning of a programlready to

process that prOgrim?

14) How does your device loop? What is its basic instruction to accomplish
I

this?

77 4



1.12 - 3

1) Do you loop to a program step or a label?

1,6) liThith keys on your device do not enter program steps (wh4n in

programming n de)?

17) How can you review the seeps in a program that are keyed into

your device?

18) Does your device allow replacement of a program step? , If so,

how do you accomplish this?

19) Does your device allow you to delete a program step? If so, how

do you accomplish this?

20) Does your device allow you to inser a new program step in the

middle of a pr.ogram? If so, how do you accomplish this?

C
-1 a

8
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1.13 Using Your Pwn Calculating Device'
1

a

Mb

The very best way for you to become familiar with your calculator,

microprocessor oxecomputer is to use it.. The most interesting way to

use your equipment is to solve problems. Throughout this chapter we have

presented verbal algorithms and programs that have solved specific prob-

lems, like multiplying two complex number's.

Exercise set 1.13 contains more problems that you can use to help
4

,,you understand the operation of your calculating device. ,...---Each of these
-..- _-.--

problems Can be solved in many ways with s6lutiOns that range from very
I

simple to extremely sophisticated. We suggest that you start with a verbal

algorithm and a simple solution. As your familiarity with your equipment

increases you can broaden the fobus of your attention beyond the solution

of the problem to solving the problem in the fewest steps or displaying ad-

ditional information. Make sure that you test each-program with several

'trials whose answers..you know (or are willing to compute by hand. )

Exercise Set 1.13 f

1 - 4 <Refer back to your solutions for exercises (13 - 16) from section 1. 9. /

Write a program to find:

1) The area and perimeter of a rectangle given sides I and w.

2) The area and perimeter of an eqcilate- At triangle given side 's.

3) The slope of the line between (a, b) and (c, d).
7
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4) The sum of two rational numbers a/b and c/d.

5- - 10 These problems refer to mathematical ideas that you have seen,

but have perhaps forgotten. You may want to look back at your old notes

(if they still exist) or another math book.

5) Given the hypotenuse and one acute angle of a right triangle find

(a) the measure of the other acute angle.

(b) the length of each leg.

(c) the perimeter of the triangle,.

(d) the area of the triangle.

6) Given the equation of a parabola, f(x) 6= ax2 + bx + c find

(a) the vertex. (turning point)

the equation of the axis of symmetry(h)

(c) the sum-of the roots

(d) the product of the roots
4-0

For (c) and (d) do not compute the roots.

7) Find the area of a triangle given two sides and the included angle.

8) Find the area of a triangle given three sides. You might want to

use (or find) Herieo:s formula.

9) Given two points in the planes, determine the equation of the line

through the two oints.

10) Find all the prim s less than 100.

II) Find the sum of the squares of N consecutive positive integers.
4-r.

12) Given any integer less than 100, find

(a) its smallest prime factor
(b) all its prime factors

3o



1.14 Chapter 1 Test

40...

Teat- 1. 14 - 1

4 .

on,- 4) dive a keystroke sequence.that you could use n our calculatoi

to evaluate each of the following ,expressions.

1)

3)

5 + 6/7 2)
.0

4)

(3
0

6 sin 37°
5

+,4)(5

+ 3
+ 7

(5 - 6) Evaluate each of the following.
p.

5) 2 + 5 4 5 + 6) 2 ; 5 + 5 X 7

(7 9) Determine what the calculator would stop and display in each

case proceeding through these program steps when the value at step 5

is as given.

7) x= -4

06 x > 0
07 GTO 11
'08 CHS r +/-)
09
10 R/S

12 R/S

8) x = 2 9) x = 0

(10 - 12) Determine what the computer would print when the value at

step 5 is as given. 4196 if x < 0 then(go to 10
07 x = x A 2
08 PRINT x
09 STOP
10 X = X2

11 PRINT x
12 STOP

10) x = -.6 11) x =0 .12)' x = 3

(13 - 14) Evaluate each of the following expressiont. 11,9und your answer

to the nearest hundredth.
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11.

07T+ sin 48. 6°
13) 2 1

(1, 5) -

Test- 1. 14'-

14) The area of a tringteNtiith
sides a, b and c is given by
Hero's Formula:

Js(s- a)(s- b)(s -c)
where s = 1/2,(a+b+c).
Find the area of a triangle .

whose sides *are 6. 2, 3. 6, and 5. 1

(15) The time- needed to complete,one period, of a pendulum-is
a ,

given by the formula t =t . where represents the

length of the pendulum. Find the value of I correct to the nearest
9. 8

hundredth, that makes t closestto 3.7 seconds.

9.(16) Using the formula F = -5- C + 32:

a) Write a.verbal algorithm to convert a Centigrade temperature

to a Fahrenhei,t temperature.

b) Write a program for your calculating device that uses yOur

c) Set your calculating device to exhibit answers rounded to the

nearest integer. Using your progliamfrom 'b) find a tempera-

ture where the digits of the Fahrenheit tempeiature are reversed

gorithm from a).

to represent the Centigrade temperature. Example:
Y-417.

.45o C =
?

54
0 F. or 68° C 3 86° F

(17 - 18) Choose one of the following two questions.
t

17) We wish to calculate the real and imaginary coefficients of the

reciprocal of a Complex number.

a) Algebraically determine the real and imaginary'coefficients of
1

a + bi
S2

9
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Test - 1.14 - 3

111

,

b) Write a v.erbalV*134fith'm to calculate the real and imagina

coefficients ,of the z.!eitpt. oc al of cpmplex number.
. ,

. _.

c) , Write your algorithib.-from b) as a prograln for your calculating

device

(4 - g) Using c), rewrite each of these ci)capleic numbers in stand-
c4.

and form (that is as c +

2 +"3i e) -1
1

+ i ,

I
g) 5 - 7i

0,

As already mentioned in qupstion (14) that area of a triangle with

Sides a, b and c is given by the formula

A = s (er=a)(13 -1:)(e -c) (k + b + cwhere s =

a)* Write a verbal algorithrn'to.determine the area of a triangle 4.1
4

.

given three aides, using Hero'i F.omula..
II

V r
bi Write a program that will find the area of a trianglemoingllyour

1

alko* fr'orn a);

(C. - d) 'Load your program into your calculating vice and find

!I4
the area of each of the fs:10.ving triangles to the nearest integer.

= 108
1

,= 88, b = 72, d) a = 2, b = 3, c.= 5
4.

e) 'Explain your answer to d)." 4

83
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C HAPTER 2. SEQUENCES, ,SERIES, AND LIMITS
4

.

In this chapter-you will have theApportunit); to use your new-found

.9%

programming power togeither v.fith._your more formal mat- hematical

skills to gain insishts into some important new ideas.

Ever since you learned.to count 4i have dealt with the kinds of pat-
O .

berns
r
thai lead tosc.iqu'ences. We will now examine these and more complex.

sequences. You willfind that they lead 'us, to some important applications

as diverse as compound interest and the length of the path of anbounqng
.

ball.

2. 1 Sequences

1 A sequence, S, is a function whose domain is the natural numbers.

r

Let examine what this formal definition means. We know, what a function

is. It is a "mathematical machine" tat accepts ca.taill input number and
.

produces from them output numbers as in the diagram.
i

INPUT FUNCTION
MACHINE

OUTPUT e

We'aiso,knofwhat-the natuiral (or counting) numbers are.. They are the

ers t, 2; 3, on. Oiir definition of a sequence then is

or .other mathematical elements



. 2. - 2

4

a function whose input numbers are restricted to 1, 2, 3, 4, 5 and

so on, no negative or fractional or irrational numbers allowed.

EXAMPL 2 . 1 -1 What is the difference between the

squa .itLig.,\function and the/equence of squares?
"fr

Solution: The squaring function f(x) = x2 or

f: x 1. x2 has as its domain all real numbers

. Thus a table of values could include the following:.

St.

*/#

x x2

1/2 1/4
3
0

9'e
.

3. 7 13. 69

and the fa:': grad: would appear as:
f(x)

x

The sequence table would be re -restricted,
2

X

1

2 4
4 3 9

4 16

and its graph would jnclude only isolated points.

L



f(x)
(3)9)

(1#)

Z. 1 - 3

(1)1)

4
V

In the example our sequence of squares, S, could be listed as the set

of orderigd Pairs:

S = f(1, 1), (2, 4), (3, 9), (4, 16), .../

the 3 dots meaning "and so on"ofollowing the same pattern.
4 .

Sometimes the general term is also named explicitly:

S =.f(1, 1), (2, 4), (3, 9), , (n, n2),...1 i
Youswill be pleased-to know that this complex notation is usually abbrevi-

p

atect"by listing only the outputs in order:

= (1, , n...2,
4

or even

S = (n2)
*

In these notations n is assumed to "eprese a natural' number.
. 4

When we wish to speak of a particular term of a sequence,

several notations are possible. The third term of the sequence

be referred to as S(3)

or S3'

*. 4
The use of parentheses idstead, of brackets here is corruhon sequence

again

S may

notation..

. 0 r)
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2. 1 -4

)

In the sequence of squares, : S3 9. We could specify this sequence

by designating the nth term:

Sn = n2.

A sequence is called finite if Lit has a finite 'number of terms: more

simply, it stops. A sequence is called infinite if it is not finite, that is

it "goes on forever. "

EXAMPLE 2. 1-2 For the sequence defined by

9 Sn = 21477-1-

give the first five ferms.

Solution: Substitute 1, 2, 3, 4, and 5 in the defining

function to obtain:

VT: 17-,- 3, 417-

Notice in example 20-2 that while inputs must be natural numbers., out-.
.A

Puts are not's° restricted.

,Exercise Set 2. 1

9 For each sequence as defined, give the first six terms:

1) Sn 2n - 1

4) (2n)

7) Sn (-1)n

2) (n2 - u)

5). Sn nn

_2) CI )

87

3) (1/n)

6) ( TUTi )

3
9) Sn =

10
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I

I

10 - 18 For each sequence, give the required term:

(n2-n), S100 12) --( 1), S
n 50

Sn = nn, S(40,) 15) (ZIT), S25

( -n+1)' S99
18) Sn : ::

3
S(46)"..

1CP
,

10) Sn = 2n-1, S40 If II)

13) (2n), S(20) _ 14)

16) Sn = (-1)n, S(.100)
47)

2.1 - 5

19 - 22 A verbal algorithm for generating successive values of a se-.

quence is:

1. Set n= 1.

2. EvaltAte Sn

- 3 Display n, Sn

4. It you have enough values, stop.

5. ni---n + I.

6. Go to step 2.

Program your calculating device for the sequence

Sn --=

5n + 1
n

4
19) 'Run your program to give the first five terms of Sn.

2-0) Continue to run your program
)

will be close to.

21) Does

to
....5n + 1 44...4_2

n n

until you can predict a. number 51000

)

22) How does your answer in exercise 21 help to justify your answer,

in exercise 20? t /

r

4



2. 1 - 6
N

23 - 26 Program your calCulating device to generate successive terms

of the sequence defined by

n3
Sn = -27

23) Give the first six terms.

24) Which term is largest? Give n and Sn.

25) Run your program until you can predict a number S1000 will be

close' to.

26) Use( the following representation for the first seven terms of this
Pr

sequence to explain your answer in exercise 25:

1.1.1 ,2.2.2 3.3.3 4.4-4 5.5-5 6.6-6 7- 7- 7

2 r 2 / 2.2.2 2.2-2-2! 2 Z 2-2.2) 22.2.2-22' 22Z212.2

4
s



2. 2 Arithmetic Sequences

2.2 - 1

In section 2.1 you met a variety of sequences. In order to sort

these sequences into categories mathematicians assign several names

to types. Some examples are:.

Definink function First terms . Type

S n = 7

5 sn (-1)n

S = (-2)n- 1

7, 7, 7, 7, ..

-1, 1, -1, 1, - I,

1, -2, 4, -8, 16,

Constant sequen6

... Alternating sequences

... (ilternating signs)
.

A more important type of sequence because it has a numbe-r of in-

teresting applications is-an arithmetic sequence. An arithmetic sequence

is also known, as a linear sequence or an vIthrnetic progress/ion.
.4

An arithmetic sequence is a sequence' in which the difference

between successive terms, d, is constant.

Here are several arithmetic sequences:

Defining function terms 'Common difference

Sn = n 1, Z; 3, 4'; 5, ... 1

Sn = 10-2n
tt

8, 6, 4, 2, 0, -2, ... -2

(2n - 1) 1, 3, 5, 7, . . 2

It i) not enough for"-some differences to be the same; all$must be alike.

Although we have not stated it explicitly in our definition, order is import-ant. By, the difference between'successive terms we mean, Sn+1 Sn

f or.
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...

{

2. 2 - 2

EXAMPLE 2. 2-1 Is (n3 - 6n2 + 12n) an arithmetic sequence?
%

Solution: Si = 7

Sz = 8

S3 = 9
L

These three values sugges-t an arithmetic sequence

with d = 1. But S4 = 16

S = 35
5

S .:.- 72
4

Clearly the difference is no longer constant and this

is not an arithmetic sequence.

4.

VP

-Since we have defined an arithmetic sequence as having a common

difference, d, we can represent successive terms as follows:

S2 = S
I

+ d

S3 = S
2

+ d = (Si + d') + d -= S
1

+ 2d

S4 = S3 + d' = (S1 + 2d1 +d = SI +3d
.T----

In the same way:

S..
D

= SI +4d

S6 = S1 + 5d-

In general we can write:
$...-

1

I

... 4..s.

= Si + (n-1)d i

I,

4

This formula would be of little importance if we always had tlie-defining

function for Sn. We oftkn do not have that function stated. Instead we m

g

I

NI



2. 2 - 3

be given the first several .terms as in the following examples:

EXAMPLE 2.2-2 Find the 20th term (S20) for the arith-

metic sequence whose first few terms are:

1 1 12, 3-
2

, 5, 6
2

,

1
Solution: We identify SI = , n = 20, and d =

A

Substituting in our formula we have

1 + ( 20 - 1) 1 1 :-. 1 + ( 1 ;4) (11) = + 281. = 29.
-20'2 2 -2- 2 2 .2

EXAMPLE 2. 2-,3 If I purchase a bicycle for a $5b down payment

and $10 per month for a year, how much will I have paid at the

end 'of the year?

SolutiOn: We translate the total paid so far into a sequence

1st month 60
2nd month 70
3rd month. 80

We have an arithmetic sequence with S1 = 60,

d = 10m= 12

S12 = 60 + 11.10 = 170

The total cost of die bike is $170.

4.

ar



24. 2 - 4

Exercise Set 2. 2

i -1 - 6 Which of the following sequences are arithaietic? For arith-

metic sequences find d.

1)

3)

5)

27,

(3n

I
1

_,

25,

- 5)

1

237 21, ...

r ..
"1-

7 - -10 Give the first five terms:

7) .S1 7 3, d = 4

=- n2

4) 4, 4, 4, 4, 4, ...

6) 1. 6, 0. 7, -0.2, -1. 1,

8) S = 5, d =

9) S = p - 2q, d = q S3 = 6, d 12 Be c a ref ul

11 - 14 Use the formula Sri = Si + (n -1)d to find the indicated term

for each arithmetic sequence:

11) 1, 3, 5, ; S21 12) 10, 7, 0, 1, ...; S15

13) 1, 2, 3, 4, ...; Szo . 14) 50, 52. 50, 55, ...; S9

15) Iriterms of-- d the difference between S6 and S9 ik 3d.r- Why?

16 - 17 Express in terms of d the difference-between

16) S1 And S5 11) S35 and 550

O

18) The arithmetic mean between two numbers is the term thal wculd

come-between the two numbers if they were in arithmetic progression.

Thus finding the arithmetic mean between 12 and 37 means letting

SI = 12, S3 = 37 and finding S2. Use what you found in exercises
4.,

15 - 17 to find d and then S2.

93
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2.2 - 5
,..

49) "' Find the arithmetic mean between 10 and 25.

20) Find the arithmetic mean between a and b.

21) Use your answer in 20 to justify the use of the synonym average

for the arithmetic mean. f

22 - 23 To insert
1
n terms between twcrgiven terms of an arithmetic

.
isequence is often (misleadingly) called finding n arithmetic means be-

tween the two numbers. Generalize your method in exercise 18 to find_

the following:

22) Three arithmetic sequence terms between, 5' and 13.

23) Five arithmetic means between 37 and 19.

24) J.0&.4e.a-ves woo for college spending money. He plans to Spend

$50 per week of this. Use the arithmetic sequence formula to

determine how much he has left after 26 weeks. (Be careful. Note

tat S1 = 1950! )

25) Find a formula for the amount Joe has left after /Ay weeks (in exer-

cise 24).
i

26) In an arithmetic sequence S
3

= 40 and S
10 ....12-' find S17.

Hint: first find cf.
1

27 - 30 An aritmetic sequence is also called a linear sequence because

its defining function isi linear; that is, of the form

auc + b.

4

91
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5

_6

. Thus the defining function a linear or arithm tic sequence

takes the form
(rnn + b) or

27) Find
'S1

as a function of m and b.

Sn =
( ,

+b

28) Find d = S2 S1 as a function of m, and b.

29) Use what you found in exercises 27 and 28 to determine the den

fining function for the sequence: 5, 7, 9, 11, .

1 3
30) Find the defining function for the sequence 1, 1

4 4

95
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2.3 Geometric Sequences

2 3 - a

3-

.Geometric sequences are also .called geometric progressions or
4

exponential sequences.

A geometric sequence is a sequence' in which there

is a constant ratio, r 10, between successive terms.

Here art some geometric sequences:

Defining funcXone First terms

S =

(0. 5n)

100

(3)

Common ratio

1, 2, 4, 8, 16, ... .2

O. 5, 0.25, . 125, 0. 0625, . (). 5

1 1 1 5 25 -125
100'20' 4'4' 4'

1, 46-1, 1, -1, 1, . -1

3, 3, 3, 3, 3, 3, .. L

Notice that the 1,st (constant) sequence also has a con-yr-non difference,

d = 0, so it is both a geoihetrIc and an arithmetic seitenCe. .

From the defining relationship for i geometric sequence

Sn 4'1% = r
Sn

we may obtain
Sn +1 =

ti JI.

As in- the case of the .arithmetic sequence, order is important here;
thus r = (Sntl) /S

81

0,

N
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.4.

Applying this to the first few terms, we have

S2 = 'SI

S
3

=-,rS
2

= r(rS1) = r 2
S'1

S4 = r$3 = r(r aS ) = r3S
1 1

. ,

.
Similarly:

4
S5 = r Si

S6 = r5S1

This' pattern leads ttathe -general formula for

It

Sn:

2. 3 - if

'I,

EXAMPLE 2.3-1 Find' the ninth term of the sequence whose

first terms are '3, 12, 48, 192, ...
Solution: We identify. S1 -= 3, r = 12 = 4, and n = 7.

3
7-1

S
7

---= 4 3 = 46 3 = 12,288.
.

.

To calculite products like these, a calculator is very useful. In the next

'14
example it' is even morrimportant.

. -

f{

EXAMPLE 2.53-2 , In algelnetric tiequegice S3 = 4.056 and

,f7 = 11.5843416, find SI and S5 .

Solution: S3,= r2S1

S7 = 2:6S,
1

so (1) r2S
1

= 4.056

so (2) r6S = 11. 5843416
1'

Dividing (2) by (1) we have:

, r4 = 2.8561 and r.=
4

2. 8561

And by calculator(using the
1

r = 1.3

..I

. 97
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2.3 - 3

- To find S ,suhstitute this value 'Of r into (1):l' ,
I .

(1. 3)2 S = 4. 056
1

SI =2.4

Exercise Set 2.3

4To find S5: S5 = (1.3) 2. 4 := 6. 85464

1 - 6 Identify which of the following a,,re geometric sequences. For

. those that are geometric,, find r.

11) 1, 5, 25, 125, ... 2) 8, 2, 1
,

0

13) 2, 6, 18, 72, (... 4) 144, 120, 100, 83
3

5) 0, 0, 0; 0, .. 6) It -3, 9, 27, 81, ...
. 7 - 10 Give the first five terms of each geometric sequence

7) S
1

= 3, r =2 . 8) SI = 1, r= 0.6
.9) S1 = a, ,S2 r ab 10) S3 = a, r = b

11 - 14 Find the required term of each geometric sequence:

vir 11), 1024, 512; 256, ..."; Si2 12) 3, 2.4, 1. 92, ; S6

13) S1 = 72, S3 = 8; S8 14) S3 = 91.125; S2

15 - 18 The geometric mean between two numbers is the number that

Would fall between them in a geometric sequence. Thus to find the geo-*

metriemeIn between 2 and 32, let Si = 2 and S
3

= 32, and find S2.

Uss e this procedure to find the geometric mean between each of the

1

847 9s



2. 3 - 4

15) 2, 32 16) 32, 2
54

17) a; a' 18) a, .b

.19) Find themean proportional between a and b.. That is, solve

the proportion

g. b
for g.

20) What do your results in exercises 19 and 20 tell you about the

mean proportional and the geometric mean?

21 - 2a. Inserting more than one geometric mean between two numbers. is

like the process for arithmetic means. To insert three means be-.

tween 7 and 67, for example, sep S
1

=,7, S
5

567, and find S2,

S3, and S4.

21) Insert three geometric betWeen 7 and 567.

22) Insert two geometric means between 567 ,and 168.

23) A golfball dropped on a cement floor bounces 80% as high. If the

)ball i's dropped from a height of 2 meters, give the heights to which

it bounder for the first 5 bounces, Is this a geometric sequence?

24)

If so what is r?

Si.

A "nest" of squares may be constructed

by joining midpoints of sides. Show that

le areas of the squares form a geornitric

sequence; that is, that Sn.1.1.Ar Sn. (Find

r. ) If the area S1 is 96, find

99
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2.4 Finite Series

2.4 - -1

We found in sections' 2. 1 to 2.3 how to cakUlate specific terms

of many sequences.. We now turn our attention to finding the sum of ,.

the terms of sequences.

Clearly there is a direct way of doing this.

EXAMPLE .2.4-1" Find the sum of the first seven terms, of the

arithrctic sequence (2 + 3n)

Soluti,en: Generate the first seven terms: 5, 8, 11, 14, 17,

20, .Add them to get 98.

EXAMPLE 2.4-2 Find the sum of the first tight terms orthe

. geometric sequence 3, 6,'12, .

$olution: r = 2, so-the eight terms are: 3, 6, 12, 24, 48, 96,

'192, 384. Add to.get 765.

We have used the notation Sjn or S(n) for the nth term of a.sequence.

We now introduce the symbol yn (using *the regular dollar sign) to repre-

sent the sum of ierniDup to Sn.

Thus:
$

1
.= s

1

.
,

$2
=

.S1 S2+ .

.

$3 = S S.
1

+
S2

+
S3

and 'in general

$n

= .S1 + S-2 + S3 + S4

+S3 +"... + S
. n

1

4

2

,4
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2.4 - Z

Applging this notation to the examples,: in example 2.4-1 we found

`$7 = 98 and in example Z. 411 we found $
8

= 765
. .`.

It is important to recognize that $1, $Z, ,33' ($4, itself forms
'.. .. a

a sequence. This sequence of sums is called a series.

Whenever we are given the defining function for a sequence (the -

-1 -

formula for Sn), we can use a simple algor rn to calculate $0. This
\

verbal algorithm is a minor modification of the program of section 2.1

(see exercise 2.1 ) used to caldulate sequence terms. We will dig-

play both Sn and $n.

TO CALCULATE Sn, and $-n for n = 1, 2, 3, .

1. Set n $.= 0
2. Oalculate Sn
3. Display ri, Sn
4 , $ $ + Sn
5. Display $
6. If n is large enough, ;top.
7. n n -+ 1
8. Go to step Z.

ISs

This verbal algorithm has several problems associated with It; First, it

does not work for sequences for which the general term is not available.
a

You will be asked to modify the program to take care of this for arithmItic

and geometric sequences. Another problem is that the process is ineffi-

cient. For example, if we want to calculate $100, we must first calcu-

late $1 to $99.

In the case of many series, partickarly the arithmetic and geometric

series, we can calculate $n directly. We now turn to the development of



o0P

, .

2. 4 - 3

..
I,

those formulas. In eacJa case we start from the basi'c relationship

+ S +Sn-2 +S
n-1 +Sn4

#

and employ a trick.

Tie Arithmetic Series

A. We recall the role of d: Sn+1 = Sn + d for all n in an arithmetic

sequence. ilus we may substitute in (1) to obtain:
ca.

(2) $n = S1 + (Si + d) + (S1 1 2d) + + (Sn - 2d) + (Sn -d)-+ Sn

Now we use the tricks. We rewrite the right member of (2) from right

to left

(3) = Sn + (Sn t d) + 4Sn - 2d) + +(S1 4:2d) + (gi + d) + Si

"and then add (2) and (3)

(4) 2$n = (S1 +Sn) + + Sn) (Si + Sn) + + Sn) + (Si + Sn)

On the right side 91*(4) we have n pairs (D6 you see why?) so:

(5.)- = n(61 +

and

(6)
, *

$n T (Sri Sn).

Now we. have, in equation (6), a fora iula for the sum of A. sequence, $,

given the first and last terms, Si and Sii and the numbexiof terms, n.
girob.

30.--,.._ iIf we don' know S.6, we can calculate it by the formula of section 2. 2,

(7)' Sri = Sy+ (n-1)d;

102
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2.4 - 4

-

or we can substitute this for Sn in (6) to give:
.

(8) $n = II- [2S
1

+ (n-1)d]

EXAMPLE 2.4-3 Find the sum of-the first 20 terms of
ra-N,

the Sequence beginning: 5 8,- 11, . , .

t

Solution: S1 = S, d = 3, n = 20. Substituting in formula (81:

$20 =
120 [2 5 + (20-1)3] = 670

- s2 .
EXAMPLE 2.14-4 Find the sum of the first 100 natural numbers.

_ )
Solution: S

1
1,

100
= 1 S = 100, n = 100, d = I. Using formula (6):

1 INA

$100
1

2
V (1 + 100) 5050 ,

17"

4

The Geometric Series
'4 --Turning now to the geomet-ic sequence we recall the role of r:

Sn+1 = r Sn for all n. We tubstitute this in (1) to obtain:

(9)°,,$n =, SL + r51 + r Sl° + + rn-3S
1
-+ rnI SI

t
Now the trick. Multiply (9) by r:

-
Go-) r $n = r 51 + r2S + -+ + r

n-2 S1 + rn-1SI + r nSI

Subtract (1.0) from (9):

(11) $n r $n =
1

- rnS

Factor the left member of (11):

(12) $n(1- r) = Si - r S
1

1- 103
111
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"1

1
This leads fo ,

S 2. 4 -

.
(13) $ =

S1 - rnSi
. or (14),

nt. 1,- r
-This formula correspond ss to the second

S1 (1 - rn)
$11 1" - r

9

arithmetic sequence formula,-
1

(8). We can rewrite (13) as
.

(15) $n = Si - r(rn1 SI )

l'-.-r
, 449

and substitute Sn for rn- .1S to give a formula corresponding to (7):
.

(16)

1

S1' - r Sn

$n=
1 .:Nr)

?

%

I

EXAMPLE 2.4 -5 Find the sum of the first 10 ter the geo-

,

4f
r metric sequence whose defining function is (3 2n).

...,Solution: The first seNteral terms are 6, 12, 24, ... S1 = 6;

r = 2 and n = 10. Substituting in ( 14 ) :

6(1 7 210) 6 (-1023) - 6138.$10
1 -. 2 /' -1

...
We summarize here the formulas we have`developed:

4

GEOMETRIC SEQUENCES

*

ARITHMETIC 1EQUENCES

Sn = S1 + (n- 1)d
. , .

, .

$. =.2'2-11- (S
1

+ Sn )

1!4

n-1Sn = Si r

$n =

4

S1 - rSn
1 - r

1

-

IN

-.-.---.
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2. 4 -. 6

.

Arithmetic Sequences -(cont. ) Geometric Sequences (coot. )
.... .4. -

$n

Exercise Set 2.4
1.

'$n

' S1 rnS
1

1 - r

SI (1 - r re)

1 - r

For many exercises a calculator will be helpful.

1) Find the sum Of the first 5.0 natural numbers.
-.

2) -Find the sum of the first 20 powers of 2: that is, 21, Zz., 23,

3' - 10 Identify each sequence as arithmetic, geometric, -or other. Find

the required $n.

3) (,
g) 8,

3, 5, 7, ...; $*0

4, 2, 1, .. ; $10

7) (5 -.3n);, $20.

9) (x2 -x +3); $5
' r

4) 1, 34, 5, '7, ... ; $"

6) Sn ,= 100010. 5)n; $5

8) (81 (3)n ):- $7 /
16) ,800, 750, 700, L ; $21

olor
i

Ilf In a famous problem.you are asked which you would prefer to re-
1

.

ceive: a single payMent of a million dollars or a 30 day month in
-

t which you are paid It the first day., tU the second, 0 the third, -

and so on, doubling the amount you are paid on each succeeding

day. Ddlermine the better offer by careful calculation.
11-

12) Progrm and solve ekercise 3 by following the verbal. algorithm
o

.

of this section.
A

6Y

2 ,-
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13) Modify the verbal algorithm to calculate Sn and for n 1, 2, 3, .

when you don't know the defining function, but only know that it is

an arithmetic sequence with known Si and d.

14) Make a similar modification for a geometric sequence with known

SI and r.

15) Another way to derive the foralula for $n is factor
n-1$n = + r + r2SI+ + g S1(1 + r,,+ ra + +r )

n1 1 - rnand substitute for 1 + r + r2 + + r equivalent I - r
1 - rn 11, 1Show that - 1 + r + rt + + r by either multiplication
1 r

or division.

16) What happets-is to formulas (13) and (16) when you have the constant

seqUence 5, 5, 5, 5, Give a formula for $n for a constant

'series in terms. of SI and n.

17) Check your second answer to exitrcise16 by using the arithmetic

sum formula.

.
1.



nfinite Series and Limits
. ti

,topics of centr,a1 importaneeto advances mathematics ale

t.
1.0

those of th.i. section, infinite series and limits. In this section we/will,

introduce these important ideas only partially and informally, the details
...

.
and more for..mal aspects ft until.you meet these topics again in your

study of the calculus.

Without knowing it, you dealt with both topics as early as grade six

when you tried to represent 1 / 3 as a decimal and found', .

(1) 1 = 333°1'33333333333333333. *I
always with that same tantalizing and elusive 1/3 remaining after each

step of the division. We may rewrite the expression of .the right member

of (1) as:

,(2)
1

3
= . 3 + . 03 + .003 + . 0003 + . 00003 .+

Notice that this right tnembe,r is an infinite eometric series, infinite

meaning that it continues forever or does not stop. The defining function
-

for the sequence of terms to be i9ed is:
-3

Sn =

You in check this by representing SI, S2 and S3. In this sequende

3 1
S1 = la, and r = 10 . We may substitute this in one of the sum formulas

of section 2.4 to get:

We have been utling the three dots, formally called1an llipsis, tO'mean.
"and soh on following the same Eattern. " This is stands.* mathematical

practice.
. 10



/ A

- 3 is 1 %/I,
,

1 1
n

10 k )10-
.- %,---,

$ /11 -
-: i- (1 -

10
)

1.1
. \. / .10

2.

If we eValilate this expression for values of n, we g eft. (as we should

expect):

(1 1 9 .= 3-
3 10 3 10 10

/
$ 1 ( l 99 33

2 3 2 3 100 100
13

10

t 1 1 999 333
- = = .333

100010 _
3 1000

These sums check directly with Whattyve would get, in equation (2). Since

we know by how the series was generated that this value gets clo.se'r and

closer to 1/3 we, may write formally

r,

lira $n =' 1
nwo 3

, We can -read this "The lipit of the series gum as it approaches infinity

is one third." In our informal understanding it is reasonable for us to think.
).-

of limit as meaning something we get "closer and closer to." (There are

many problems with this definkiion, some,of which will be addressed ip

the exercises'.

Novotwe consider the series formula itself as n co

$n
S1 (1 - rn)

1 r

The sense of this is "n becomes very large."

V

11.

.4

.en
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So.

. 2.5 3

focusing our.attention on tn.. vore-Cla
.

2.5:1 .

,

that _

If -1< r < 1, n r 0
Db.,061

1 )

2 We ;ill not prove this thebrem, 111 will instead try to justify it by tneins
4

of "ezarriples. If r = 0;1, .,it is to.believe that "I'll gets closer and

closer to 0.
rZ = 00. 0L

5r = 0.00001

10r = 0:0000000001'

But what Zhou& r = 0. 9'? Does

perhaps, but it does:
a

r2 = 0.81

At

4IN

(0. 9)n also approach zero?. dir so quickly
. .

r 5 = 0.59049

= 0.3486784401

r50
= 0. 0051537752

r100= 0..0000265.614

0rz 0 = 0.0000000007

r

_ -

values
rounded to
ten
decimal

cdigits

!

You should. check these values by calciali..tion.

If -1 < r t 1, we have said that rn approaches zero for large n.

This has a profound effect on the formula for $n under the same'conditioni

k

$n
S (1 - rn) S (1 - 0)

1 - r 1 - r 1 -r

1 09
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2. 5 - 4

We can write formally

2, 5. 2

4

ti+

If -1 < r < 1, limn Si
n-7.0 1 - for the geletric series $11

.

To apply this important theorem we notice that any geometric series

14v does not stop is an Infinite series. We must only assure ourselves

that -1 c r < 1. We wiF abbreviate lim by $ or simply $.0.0

EXAMPLE 2. 5-1 Exprkss as/ a ratIonaLnumber 'the decimal

0.636363... f 4

Solution: We may rewrite . 636363... as

. 63 4. 0063 + .000063 +

and identify SI = :63 and r = .01. Since the

series is infinite and -1 < r < 1, we may use

the formula of theorem 2.5.2 to obtain

63 - =63 7
1- .01 99 11

EXAMPLE 2:5..2 Find the s.um of the terms of the sequence

110 (
20 )

3

10-
Solubion: . We examine the first terms of this sequence

20 20T ,

to identify S1

20 20
27 81.

20 land r.=
3' 3

'20
3

-1 .1
3

1 ,(4

20
= = 10

2,

a



2. 5 - '5

4

In the exercises we will also examine limits of reln-geometric.

series. A

Sequences can have limits too as example 2.5-3 will show:
4

EXAMPLE 2. 5-3.) Find the limit of the sequence
n + 6

Sn = 3 -2n as n oo'
1

Solution: Here we examine some terms

=
a

S2 = -8 S3= -3 S4 = -2

We seem to be going nowhere fast, but try larger values
. I

S10 = -'94 A+
5100 ---

-*
53g+. 'S = -.504- S - .50001000 1, 000, 000 =

This suggests at least that Snip, -.5 as a limit. I
.

n--firi
by ITo onfirm this thinning we change the form of (4
9Y

divi ing numerator and denominator by n to obtain
6 1 Ii + E.

2
n I

Now as n grows larger 6 and 3,,, will get smaller and
n n

I'the value of 6
n + 6 1+ -1-1 1

3 - 2n -3---- -4*n - -2 I
as we found.

Other sequences will be examined in less detail in the exercises.

111



2. 5 - 6

Exercise Set 2. 5

1 - 6` For each value of -r, -find by calculation r5, r 10, and r
100

correct to six decimal digits:

1)

3)

5)

r =7..

r -7

=

99

I

(find
10001

also) . 2)

4)

6)

r = -. 99

r = -1.01

r = -1

7) O. the basis of yOux results in exercises 3,- 6, do you believe that

the restriction of.theorerK 2. 5. 1 to
1 r I

I is. necessary?
_,.

8) Is theorem 2. 5: 1 true for r = 0? Why?
oar

9) Give an eNarnple of a sequence with S1 0 and r = 0.- Does

the formtila of theorem 2. 5, 2 work here?

10).
V

Give air argument that an arithmetic sequence with d # 0 does not

ti

have a Emig,

11) Even d el) does not assure a limit to an arithmetic series . Give
,

one arithmetic series with,,,,±: 0 that does not have a limit and one
,

that does.

12) Program
Sn 3n2 - 10n3

n

7n + 4n3 = n2

By evaluating Sil
.
for increasingly large n, determine a candidate

for 3n2 - 10n 3 + nlim AI'ln-.0. 0 7n + 4n3 - ni15
. z

. . r,
13) Justify your candidatte in exercise 12 by dividing num rator and

.._
)`'

dehaninator of Sn by m3.

112
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14) Program
5

Sr
n'- 20)

(n + 20

(a) Evaluate Sn for n = I, 2, 5, 10, 15, 19, 20.

To what limit does Sn appear to be goffig? "\

(b) No evaluateSn for n = 100, 1, 000, 1, ,000, 000.

To what limit does Sn approach?

2. 5 - 7 1

15) Justify your answer to 14(b). Hiht: Use the method of ExaMpfe 2. 5.3

,,
16) A ping pang ball is shot upward from a toy canon to a height of

5 meters. It then falls back to the table on which the cannon stands
A

and rebounds to a height of 4 meters. On the

next bounce it rises to 3. 2 meters. If

this sequence of bounces continues in

the (lame pattern, how far does the

ball travir before it comas to rest?

}lint: Don't forget the dijtance up and down!

17) Starting with a square with side 8 cm.,

I -
t

I
tI . I

1

4

form a second square by joining the

midpoints of two sides as shown. Cpn-

tinue this process. Find the sum of

the. perimeters of all squares con-

siderect separately.

TL,

1
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a

2.5 - 8

18) For the nested squares of exercise 17, find the.sufri of the areas

7\16.4s of.all. the square,s considered-separately:

19) From a square one fourth is removed, then

4

L

one fourth of one of the ,remaining three

fourths, and so on. If this procedure

is continued, to what area .does t1e re-

maininece approach?

e

t,

CO

-19
(3)

I

$
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2.6 Rectoision

In this section and those follOwing you will meet a number ofex-

tensions of the basic ideas presente(in'this chapter. In them when you are

confronted with a new sequence or series', you will find it to your benefit

to carry out the follcing checklist of steps. (Others may occur to you

as well! )

1. A. If the sequence (or in the case of series the sequence of

sums) isiiven by identtfying Sn, write the first few terms:/

SP S2, S3' S4 OR

B. If the sequence is given as a sequence 'of.terms, try to

identify the 'efining function for Sn.

2. Check to see if your sequence is arithmetic or geometric by

N

looking for a common difference (arithmetic) or common' ratio

(ieqmetric). If it is one of these, be prepared to apply appro-
\

priate formulas

neither
4

3. If \rt iu sequence is either arithmetic or geometric, examine
Nre`

how, you can gerfrom one :tep to the next. This is often useful

in exarnining the properties of a sepuence and especially 9x. pro-

gramming it

Let us examine step 3 further by means of an example.

- 1

EXAMPLE 2...6 - 1 Find $n for .ne sequence (Tit ).

Partial Solution: In case yo) have not met the notation n!. be-

115
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C

CP

fore, we note its two equivalent mathema-

tical definitions*

2.,k - 2

0 I

DEF I n! ,1 2 3 n, 0! =1

DEF II 0! = 1, n! = il(n-1)!

That these two definitions are equival nt may be seen by

checking the results for ,n = 1, 2, 3, ...
n!

n

1

2
3

4

1

1.
1

DEFT

1

2= 22 =6
2 3 4 = 24

DEF Ii

1 0! =, 1.1 '=e
2 1! = 2' 1=
3. 2! = 32 =
4:7-1= 4.6 =

6
24

Noi--we return to our example. We seek:
se,

$, = 1 1
1

1 + I '(step 1 of our 'checklist)
1! 2! A

-

This series is neither arithmetic nor gepmetric (checklist step 2)

We can get an idea of the sum by prograMming and using the program

to calculate $n for increasing' n. A _verbal algorithm to,do-this is:

\,1

1.- Set n (-1, $4 0
2. S 1/n!
3. $4r.$ + S
4. Display n, $
5. If $ is no longer
6. n 4Veio.; 1
T. Go to step 2.

changing, stop; otherwise

Here as elsewhere in this chapter we consider n a natural number.
A
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I

r I-

i Z. 6 - 3

., .

. ' , -..
There isonedifficulty with this algorithm. In step

Z we are using definitic5n I to calculate S. For given
*a.

n this involves n -1 multiplications (even if -n! is avail-
*

able as a program step. ) Btlt compare Sn with Sn+i
l...-,S.4,.= -n n!

* S ' =n+1- (n+1)!
1

N A little thought shoulesuggest thatt

4

I

t

1 1 1

(n+1)! n! n+1
(Refer to Definition U.

and
I

Sn +

1

Ke

Sn

n + 1

In other words we can go from S to Sn n +1

(

t

by dividing by n + I.

This leads to a modirsAd algorithm:
.. ..

i. Set n e- 0 , $ 40 0, S 3,-- 1
2. . Se-riTT
3.1 $ ''' S. + S ..,
4. Display n + 1, $

b 5. If $ is no longer Changing, stop; otherwise
6. n4n+1
7. Go to

*
step 2.

..; -

You will be asked in the exercises to program and calculate

this function.

i

Sn+1

What we did in Example 24-1' was to use a recursion formula

= Sn/(n + 1) -in place of the more complex defining formula Sn'= I /n!

A recursion formula is a formula whi 1h defines a term of a 'sequence by

the immediately preCeding term or terms.
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4.

2.6

This is possible for arithmetic and geometric sequences as welt

as many more complex sequences:

Arithmetic Sequence: Sn+1 = Sn d

Geometric Sequcry ST41 = r Sn

The technique may be sn directly for arithmetic and geometric series

as ,411.

EXAMPLE 2. 6-2 Express $n+i' for an arithmetic equence inv
t,

terms of $
n

. .

Solution: $n = S1 ++52 + S3 + +

$T1+1 = SI + S2 + S3

and since Sn+1 = Sn Cd

+ + Sn + Sn+1 = $ n + S
1s- ne

$n+1 = $ n'+ Sn + d = $n $n+1

Note that in programming this would be accomplishedby

P.S 4S + d

$ 4-- $ S

e".

since Sn+1 has already been calculated in the first of thektwo steps.

You must be very careful of such calculations.

A famous recursion defined sequence was first examined by Fibonacci

of Pisa and since by many mathematicians. It is the sequence

S
1

= 1, S
2

= 1
.

n+2 =- Sn + Sn+1

Yop-will have a chance to examine.this,sequencehn the exejcises.

4



6 Exercise Set 2. 6

2

2. 6 - 5

Use the method of Example 2.6-2 to develop a recursion formula

for a geometrte series.

Translate your adiver in Exercise 1 into a twc step raigulation'

algorithm.

3 - 8 To translate a sequence defining function into a recursion defini-

tion we seek k forj,Sn+1 k Sn. Clearly k SS . Find k for
n
+I

each of the following:

3) (n)

(Note that k will usually be a function of n.)

4) (2n 1),

6)% 1(2 311)

8) S. = (n! )2
n (2n) !

9 - 13 Tranilate into verbal algorithm steps the recursion formula for

each of the following. Use your results in Exercises 8

2n+14
9) (2n - 1) Solution: In Exercise 4 we found Sn+1 = Sn 2n -1 so

2n+1we have S S
-2n -1

10) (n)

12)
1

)

and their $ = $ + S.

11) (2. 3n)

13) S =
(n !)2

,n (2n) I

14) Use the secondalgorithm of Example 2.6-1 to program and cal- -

, i t/- culate $12 for S =
1

. Compare your answer with t I - I,
n n!

using the ex key on your calculator.

15) Use the definition of the Fibonacct Sequence to write the first light,.

terms of the sequence.



16)

t
vybal algorithm for generating terms of theFibonacti Sequence

follows. In it we will use Rn to represent storage register n.

1)1 Display f, 1; 2, 1

2

3)
P

4

ANote: This represents n = Si = t; n = 2, S2 - I.

Set n f 3, It
1
-

2-

1, R.4-- 1
.

Note:, We are using R1 R = SSn -1, " '2 n-2
R3 R + R1 r 2

Display n, R3

Note: R3 = Sn_

5) If n is large enough,. stop; otherwise

6) n t n + (1,

7) Go to step 3.

R1' RI .R 3

7 Program your' calculating instrument for this algorithm and record

Sn for n = 1, 2, 3, ..., 12.

17) In the case of the Fibonacci sequence,, the simple recursion formula

replaces a complex defining fuRction:

Sn = INT.

[(1 r-
5

+

n

2

Program this defining function and calculate Sn for n = /, 2,'3,..., 12

to compare with your answer to Exercise'16.

18 - 20 It is pbesible to work backwards with some sequences (but not

others) to calculate S
0,

S-1' S -2' etc. Fo4 each of the following calculate

So, S..1 lad When possible also give a formula relating to, Sn.

Recall that INT means the number "rounded down" for numbers > 0.

1,0
ma.
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2'.7 Applications a

. 10.
2-. 7 - r

Ai important application of sequences is to banking. Earlier in.

your study of mathematics you should. have' learned the basic

interestpformula 9

i = ik r t

simple i

in which i = interest, p = principal (the amount banked or'invested or loaned),
. ,

Y = the .1.e of interest (per unit of time) andt = the number of units of tigte.°

EXAMPLE 2. 7-1 Fipd the simple interest on a $100 loan at 5%
.

per yearTfor 4 years.
t.

Solution: Substituting in the simple interest formula:

i = 100 (.65)4 = 20

The interest is $20'.

Compound interest differs from simple interest in that the interest

for each unit of time is added to the principal so that s ubsequent interest=
.

is calculated on the new principal (often designated the amount)./
9

\...

EXAMPLE .12.7-2 Find the interest on a $100 loan at 5% per year
I..

for 4 years compounded annually.

Solution: (by arithmetic calculation):

Year 1: i
1

- 100 (. 05)1 = 5

4

*a

,,

4
-..

Al 100 + 5 7 105.

f

Year 2: i
2

105 (. 05)1 = 5.25

A2 = 105'4- 5.25 '= 110.25 (An+1 = An + in+i)

122
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a

*

2. 2

I
*

Year 3: 13 = 110.25 (. 05) 1 = 5. 5125

A3 = 110.25.+ 5.5125 = 115.7625

Aar 4: ii= .115 7625 (. 05) 1 = 788125

A4 = 115. 7625 + 5. 788125 = 121.. 550625

11.

^ The .final,amount less the principal is the compound

interest so

Total interest = $121.40625 - $100 rr $21. 5'5

That seems like a great deal of work'to go through to achieve a gain

of $1. 55 in interest over 4 years; however, we will see that this kind of

difference is important. We now seelea shortalculate compound

interest.

In general, for the first unit of time, an investment p at -r interest

rate gives )
pr ;and Al = p *pr = p(1 +r)

For the second unit of tithe Al becomes the new principal and

i*2 = + r)r and

A
2

= A
1

+ i2 = p(1+r) + p(1+r)r**- p(1 +r)(1+r) = p(1 +r)
2

.

Similarly for A3, the amount after thrt:lits of .time:

A
3

p (1 + r)

Arifor A 4
A

4
= p( 1 .+ r)

3

*
. 47 . .

, c . ..
.

Note: Sortie readers will be tempted to round answers at each step.
Practice here,varies but in many cakes today banks only round at the

'.--- 'end of a transaction. /
.

**
,-

Be sure that you see how this factoring. is accomplished.
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/
This pattern provides the basic .

I
I

1

I
I
I

I
I

I
I

I

1

I
I

in which An is the amount ccumulated after n time units on principal,

COMPOUND INTEREST FORMULA

A =. p(1 4 Onn,

2. 7 - 3

. o

pr at y rate of interest per time unit.

EXAMPLE 2.7-3 Find the interest on a $100 loan at 5% per

year for 4 years compounded annually. (This is Examplet
2.7-2 again. ) II
Solution: Substituting in the compound interest formula (2. 7- 1):

,.
.A4 = 100 (1.05)4 = 121.550625

This amount less the original principal represente'the

interest earned: $121. 55 -$100 = $21.55
a

In the formula A = p(1 + r)ri, the role of each factor, 1 + r, may be

considered'as contriuting two separate parts to the amount:

/the multiplier 1 gives back the amount from the beginning

1 + r
, t of the period

, .
the multiplier r gives the inte;est for the period

il

This is then applied for n interest 'periods to,give the effect (1 + r)n.

In the past interest was often compounded annually, semi-annually,

quarterly, or monthly. Today, with access to computational tools, interest

is almost always compounded daily. Here is a table that shows how stated

i
12 4 lie



a 2. 7 - 4

interest rates may be converted to elective annIA1 rates:
p

rate for multiplier multiplier on effective
stilted interest interest per interest amount annuallfteresti

rate period period per year rate

compounded r 1 + r 1 + r
annually

compounded
semi-annually

compounded
quarterly

compounded
monthly

compounded
daily

ri
7 1 + r

+
2

)
2 (1 + ;14)2 - 1 I

4
1 +4 (1 + i)4 (1 + i)4 - 1 I

r 12
1 + (1 +12))

1)1.. 12 12

r
360

+ )12 -

1 (1 + )
r 4365_1r 365*

360 360 3'60

EXAMPLE 2.7-4 Find the interest on $10, 000 for 35 days at

5% per year compounded daily.

Solution: If the annual interest rate is 5% the daily rate is

.05
360

_..00013888... Using this value.acaurate to

the limit of our calculator, we have:

Notice the different numberehere. Today banks are in competition to of-
fer the highest effective annual interest rate, but they are restricted by
law to a maximum r. (One reason for this legal restriction is that home
mortgage and loan rates must go up as interest rates rise.) To Make the
effiretivt rate as large as possible the divisor, 360, is used as the number
of days in a so-called "banker's year." she 365 then represents the num-
ber of days' in the calendar year. Advertising often refers to this *difference
as "five additional interest days. 'I.
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2. 7 - 5

A = 10, 000 (1. 000138889)20

= 10027. 81446 which rounds to $10027. 81

10, 027. 81 - $10, 000 = $27.81

EXAMPLE 2..7-5 C lculate the daily multiplier and the

effective interest t rate foqie following annual rates
3

compoUnded daily: 5%, 7 21%, 9%
-

lution: You should check the following calculations:

Rate Daily Multiplier Effective Annual Rate

r
1-6-0(1 + )365-11 +

.05 1. 000138 .05199769

v0775 1. 00021527 ;08173683

. 09 1. 00025 .09553036

The key to compound interest is to be found in the factors

(1 + r)n 2
We now examine a more general application of such factors. To lead to

this, suppose for a moment that we had 100% interest per year. Such a
, b

large interest rate - which might suggest loan sharks - would return $2. 00

for $1. 00 after a year. Gileedily we seek to increase our return still

further by compounding. This would result in calculating

(1 + 1.)n.

for n iatrist periods. (We'do not allow the extra days of our daily

calculating in Exercise 2. 7 -5.) Check the following calchlationsl of this func-

tion for, increasing values of n;
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1J

I (1 +
1 n

2

2 2.25 (semi-annually)
4 2.4414+ (quarterly)

12 2 613+ (monthly)
52 2.692+ (weekly) 4

365 2.714+' (dal )

365,24 2.718+ (hou ly)
365.24..60 12. 71826+ (by th minilte)

It turns out that

1.
1

-im (1 + )
n = 2. 718281828+*

n-wiso

and this important mathematical constant is assigned the name 2.2 In

fact we may define ex as

ex = lim (1 + x
)
n

There is an e key on your calculator: You should check to see that e1

is indeed.2. 71828+. You will meet this ubiquitous function again in the

.----reExercises and in Chapter 6. (In fact you already met it in exercise 2. 6-14. )

We turn our attention now to a quite different prOblem., a gambling

.) problem that is translated into a series exercise. We supply the probability
4114.

backgrotMd only superficially.

(

One way to remember the decimal approximation to this constant is to.
think of it as 2. 7 followed by two 1828's: thus; 2.7 1828 1828+: This
repetition does not continue: e is like in this regard.

**
For this problem we are indebted to Stephan L. Snover and Mark A. Sp*

4 -127
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EXAMPLE 2.7-6

2. 7 - 7'

1A. carnival booth offers the following game.

You toss a fair coin (chance of heads 1/2, chance of tails 1/2)

untityou toss the first head. As soon as that happens you are

to be paid in dollars the square of the number of losses. What

would be a fair (break-evth) price to pay to play this game?

Solution: Here is a chart showing the numberig tosses

against the amount you win
i
TOSS FOR FIRST HEAD 1 2 3 . 4 .. n

--.> PAYOFF 1 4 9 1.6 ... n2
_

Thus, for exffnple, if heads came up first on the fourth

toss you would win $16. Simple probability theory shows
48

that your chances are:

TOSS FOR FIRST HEAD 1 2" 3 4 ... n

CHANGE 1/2 1/4 * 1 1 / 1 (.; 1/2n

. andyour expected gain would be the sum of the series

$ = 1 1-+ 1

I ,T 4
/ 1

! 9
+ -16

16 +.
2n

. + +an

For the game, to be fair this, is also the amount you should.
pay to play. Since $ is neither an arithmetic nor a geo.-

metric series, a reasonable solution is by calculation via

a prodgram. The,procedures of section-2.5 applfgd here

. should suggest the limit. I

lira $ = 6n



4

2,7 - 8

Be sure that you carry out this calculation. (See exercise 2. 7-.1).

This result means that $6 is a faitsqce to pay to play this g4ne.. If

-
you're asked to pay $10 to play-you will lose on the average $4 per game.

Exercise Set 2, 7
1

1) Program and calculate the value of $ for xarrjple 2.7-6.

2) Try the game for yourself ten times. Find the average payoff per game.
.1

Do your results agree with the calculated value? (You may wish to

combine values with those of your4lassmates to obtain an average

Of a larger number of plays, )

3) Modify your program in exercise (1) to calculate the fair cost of the

gatne if the payoff is the cube of the number of tosses to fitiit

4) Test the game of exercise (2) ten trials.

5 - 8. Find the effective annual interest rates for the following loans:

5) 6% compounded quarterly 6) 10% t omperunded Monthly

1
7) 8 2 % compounded daily 8), % compounded daily

9) Credit card purchases are often charged or 2% interest on the

unpaid balance each month. Thus the multiplier per month is

1.015 or 1.02. Find the ective annual rate of this charge.,. Comment!

lb - 16. Loan and mortgage payments become complicated by repayments

of principil. Thus the balance or principal on which interest is calculated

is changing all the time. Here you can work through a simplified example to
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2. 7 - 9

see how this works. You take out a loan Of $1000 at 10% interest per year
41.

compounded annually. We seek the amount of the equalopayments,You are

to pay at the end 9f each yearfor ten years.

10) If there were no interest how much would you pay each year?

11') If you Raid $100 each year on the principal and paid The interest for

that,yeargyour payments would be unequal. Calculate them.. Partial0
solution: Year $100.+ .10 ($1000); yea'r 2: $100 + . ($900); etc.

*
12) Find the total of these payments.

13) How much interest is paid?
a

14) Compare this with the interest on $500 at 10% per year compounded

annually (with n(o repayments),

15)- Find the a'rerage monthly payment in exercise (11). For equal re-

payments this may be the monthly payment.

16) For the first five years, who suffersby the method-of exercise (15)?

'17) Peter Minuit in 1626 purchased. Manhattan Island from the Indians for

tritleti Iry o rth about $24 That seems like a remarkable deal, given

the current value of the island real estate. But let's examine this
p

value. Suppose ipstead of investing 'in real estate the Dutch colonist

had stayed in.Rotterdarn and investedicarefully in securities paying

an effective annual rate of 7%.' What would his investment be worth

today?

\...14) Develop a program ticalenlate the amount to which Minuit's invest-

ment would have accrued for a given input year. Use it to determine

Starting with a loan-of $1000. and ending with a loan of $0 means that the
average loan was $500.

1,30



2.7 - 10

11

th4;21.ue in 1700, 1776. 430, 1864. 1900, 1918, and 1970.

19- 27 Sometimes calculations can be misleading as this series of

'questions will show. We will calculate the approximate number of ancestors

you had at the time of Julius Caesar about 2040 years ago.

19) How many (biologi al) parents do you have?-

20) How many grandpart s do (or did) you have?

21) How many great grandparents did you have?

paternal maternal
irand- grarld- grand- grand-

father mothe r father mother

father' rpo her

you
A FAMILY TREE

'22) This pattern suggests that the number of relations is multi-

plied bay what numb:-.r each generation?

23) If one generation is 30 years, how many generations are there

in 2040 years?

24) Using your answers in 22 and 23, calculate tl approximate

number of relatives you had 2040 years ago in Julius Caesar's

time.

25) Calculate 14 this means how many ancestors you would have

had at the time of Homer about another 480 years earlier.

26) What is wrong with these results? In answering you may wish

,to consult an encyclopaedic, almanac, or history book to find

the approximate world population today and 2040 years ago:

27) Where did our calculations go astray?
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2.8 Chater 2 Test'

Test 2.8- 1

(1-4) Identifyeach of the following sequences as (a) arithmetic

(b) geometric (c) neither arithmetic geometric.

1) 3, 3/2; 3/4, .3/8,

2) 5, -10, 20, -40,

3) 1, 1, 1,

4) . 115, 2, -2, -6; ...

VIP

r

5) Give an example of a feciuence that is both arithmetic and

geometric.

3
(6-7) Find the tenth term of the sequence 12, I, 3

6) .as a decimal

7) as a common fraction

AP
(8-11) Find the indicated term of each of the following sequence

or series.

8) {tan 8,

1
9) fl, -5,

1,

1
75

ctn

,

e ,

I ,

..n

$8,

, S30

10) {20, 14, 8, ... I S17

11) 11, 3,%5, .1 $
) .20

(12-13) Find the sum of these finite series.

12) '500 + 250 + 125 + ...'+ 3.90625

13) 1 + 2 + 3 + + n

13.2



Test 2.8 - 2 .

or

(14-15) Find ple "sum'? of these infinite, series.

14) 1 + .9 + .09 + .009 +

1 1 1
15) 1 + t + 77 +

16) 'Express 2.435435 as a rational expression in simplest

form.

17) Find the limit of the sequence S
n

= as n '4000.

18) Find the limit of the sequence

Sn
= (1 +

1 n as n .

19) Determi he exact value o
N
f 14!

20) Given'the geometric sequence S1 = 10 and r = .1, find d

fortbe arithmetic sequence formed by taking the log of

eachtfrm.

At/
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3.1 - 1

CHAPTER 3. ITERATION, MATHEMATICAL INDUTION, AND THE BINOMIAL

THEOREM 4

/

In Chapter 3, we turn our attention to some fundamental

mathematical techniques, concepts, and notagton. Your calculating

power and more specifically your ability program a citculator
-f-

or computergto do routine tasks should gpe you the'tools not only

to solvc problems but also to understand the underlying concepts here.

3.1 Over and over and over and... Iteration'

You have almost certainly met problems before that appeared

to be extremely difficult but that turned out to be transparently

simple once*you were able to develop the right approach.
*

We con-

sider op such problem here:

Simplify J2 + 02 + J2 +42 +

This example certainly looks difficult. Most of us are al,

'ready uncOdfortable with radicals they turn'up those messy irra-

'tion,,ls like J-11= 1.41421356....- and here we have still worse:

radicals within radicals. Not only that but these square roots and

twos go on forever. Given this example on a test our first response

mighf.1 be to move on to the next question. That would be un-

fortunate, because you will see that the problem is quite reasonable

and may in fact be solved in several ways.

*This, does not imply that there are no truly hard problems, but mathe-
matics by its very nature often leads to re arkable and unexpected
simplifications.

134
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1.1 7 2

EXAMPLE 3.1 -1 Simplify"42,+ 2 T77771pfeTA,77

Solution 1: Mathematicians (and especially textbook

writers) do not usually assign imppsible exercises,

ft

so we expect that there is indeed a value tothis

expression. Can we get an idea at least of what

that value is by calculation? 'Indeed we can.

Think of the expression as a kind'of sequence:

IT , )2 +rt , and so on,
IP.

We can calculate these valu s quite easily by work-

ing from the innermost ray al in each case. Check 4 II

the following with your o calculator:

ill - .1.4142+

jiTff .* = 1.8478: I
d2-4-1527+Ti

.
1.9616-

WTT24-4-177417 . 1:9904- 7 II

Now it-is. not necessary to start over to carry out

each of these calculations. Notice that you get each

subsequent value'by adding 2 and taking the squire root'

of the sum: These steps are:

AH :

RPN: r
Continue this procedure until your result no longer

changes. To save effort and to avoid errors it ia'a

On algebraic calculators-especially don't forget to complete the II
A

addition before taking the second square root. The steps here
could be El El 2 El

, II
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good idea to proggram'these steps.

\ 3.1 - 3

The procedure you fo4owed.in Solution'l is called jaiiterative
. .

procedure, To .iterate mdant quite siTply'to repeat. Perhaps our

most important example-of an iterative process comes from biology:

breathing. -There are many,many oth ers in our world.

Iteration is ve!y close li related to recursion which we studied
.

In section 2.6. In fact you may consider the two words synonyms.

Here if we assign%values to our approximations we can easily-dev

a recursion formula for ourtsolution.
Alf

Let:

and let

1,

2 +12 71-0, +

1
= a x the first approximation

x2 = 5TTT, x2 the seeondapproxiNation

.00

x3 2 -1-)2 +j-e 3 the third approximation

From what we found in Solution 1, we can write the recursion formula:

x
n+1

12 + x
n

which, together with xl , will'generate the sequence. of ap-

proximations we found in Solution 1. .2

So far what we have done only formalizes Solution 1. But there

is a tremendous bonus 'in'this formalization as we will see. In fact

Solution 1 is really not even a solution in a. Strict sense. We

merely found that the calculator value no longer changed. If you .

S'a

1 3 r) ' 4
4.*

4P4
,A

j41,



4

A

6

3.1 - 4
P -

i
. 4 .

think about it for a minute or twoApu will realize that a cal-
.

Castor with are decimal places would have allowed continuing

change. The,calculator "solution" then just'ledAuk to a Very good
.

*. ,

......-- guess. Letr see then what Solution 2 will give us.

ti

1'

EXAMPLE 3.1-1 (again): .Simplify 2 +12 4-2 +)2

41 40(
A Solution 2: We identified the iteration formula

xn+l
02 + xn'

'm

.

on page 3.1 - 3. Now we ask ourselveIs what would happen.

41.41 when, in our 'iteration or recursion or repetition, we

truly np longer changed from one step to tfie next At
I 4

that time should expect-
_

xn+1 = x
n

= th4' value of the complex radical.

If that is the case,,we need o substitute x for

411

n +1 nd xn
to get .

-

x

41
This is an easy equate Ti to solve by.the follOwi,pg steps

181

x2= 2 +,x-- (by squaring)`

x2 - x - 2 0

(x - 2) (x + i) = 0

or

x = 2, -1
.
fir

- -

Since x = -L, is extraneous (why?) 4haveqle expected

solution .x = 2.
tr

You will meet other iterative processes in the exercises and

then will apply this technique to the solution of equations in-the

next section.

13 .P
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3.1-5

. Ex rcide See,3,1- .

7----
w

1) Use the method of Solution 1 (page 3.1 - 2) to find,

y = \\6 +F,
2) What is the recursion formula for the iteration in exercise 1?

3) Use your recursion formaa of exercise (2) and the method of

Saution. 2 (page 3.1 - 4) to find y in exercise (1) .

(4'- 11) Another setting in which iteration occurs is in the study

of Continued, fractions. We will\hot study, this int''Oresting topic

-inletail in this course but will consider only specific cases of
AOt

infinite continued fractions, that is fractions of the form

a.+ 1

b +

c + 1

-
Contintied fractions have what are tethnically called conVergents,

that is values that approach ,r converge to their value. for the

example above the convergents -are:

1
a, a E ; a.+ 1

b +F b + i
1

c. +

, 'a +
1

F
In the following exercises use these ideas to find the value of x

in:

i 1
(a) x = 2 + .

.. 2 + i.
.

,-
2 + 2--T-1-7.



3.1-6

4) Write the fifst four'. convergents for (a). Leave these answers

in fractional form. Label these convergents xi, x2, x3, and

x4.

5) 'In your answer to (4), locate the part of x4 that is the same

as x3. Draw a loop around this part.

6) Similarly loop- the part of x3 that is thf same as x2; and

followingthe same pattern loop the part of x2 thatAs the same

as x1.

7) If you have perfdrmed exercise (6) carefully,'your work should

justify xi 2, x2 = 2 +
1- . Continue this pattern fRr
xi

x3 - f(x2) and x4 o!... f(x3).

a) Generalizing from (7), express xn+1 as a function of xn.

9) Program your calculator or computer to bompute xnifi from xn

following your recursion formula for (8).

10) Startiiii with x1 = 2, calculate successive convergents until

x
n+1

x
n

. Give the value of xn when this happens.

11) Replace x
1

and x
n

by x in your answer to (8). Solve for x.

How does this answer compare to your result An (10)?

(12 - 20) Another of the many applications of iter#tion techniques

is to the calculation of roots. If we wish to copilte Ill by itera-.

.tion one approach is by the following means:\

.Let x-=

x
2

= N. (squaring)

x
x
- (dividing.by x)

*
You will need to recall' that for ax2 + bx + c = 0,

x = (-b 1-Jb2 4ac)/2a'..



a

v

x

We now set

'(b)

c

`(adding x)(*)

[x + Ill (dividing by 2)
xJ

1
xn+17. 7 °'n xn

- 3.1 - 7

ate we have our recursion formula for finding a .

12) Program your calculator to compute xn+1 firm% in formula (b).

Assume that N is stored in Ro,, and if necessary store'xn in R
1.

Liostthe program steps.

13) Use your program in exercise (12) to compute diT Store 19

in R0. Enter 4 in the display (as x1). ''dive your answer after

xn noongerAangds. Compare this result with J1T,calculated

. by use of 5he 4w.Y.

15) Repeat ,exerc (13) but

14) Why was 4 a good for

16) Repe;itcise (13) but

17) Repeat exedise (13).but

using,,,x1

using xl

using xl

= 1.4w

- 1000.
,

= -10. 'How does this solu-

.tion (lifter from those of exercises 13 - 16? Is it .correct?

18) Use the same method as the one before exercise (12) to derive

a,retursion equation for1374-. At. ( *) add4x.)

Progra& your calculator-for the iteration of exercise (18) an d]9)

use it to 'computer. Use xi = 1. Check yilr answer by

cubing it by mean: of the R keir.

',20) Develop a formula for computing \FT , program it an
5

d use this



r

0,

3.1 - 8

program to compute \.5j 1'000 (Hrht: At (*) add 4xd
1

It may be of interest to you that the_pcogram of exercise '(12)

I

often the one that is prepfoirammed (or "hardwired",) into calcu-
.

lators fohe 111 key, These hardwired programs usually use

either x1 = 1 or x
1

= N. The iterative bechnique of exercises

(12) - (20) is named after the famouS Engliih mathematician. and

scientist, Sir Isaac Newton. (You
AW
will recall perhaps that Newton

ii supposed to have thought of the concept,of gravity when he'saw

. an apple fall from a tree.) The techniquefis .variouslylLed

Newton's Method or the Newtop4aphson Method. In its more, general'

form it is a calculus technique.

I

ri



3.2 Solving Equations by Iteration.,
,

4;0

3.2- 1

In exercises 1.2 -20 of,Section 3.1 you have already used itera;..
.

i tion techniques to iolve equationil'of the for;ve 7 N. In this
.

11
.

..

section' we-will first solve 'systems of equatiohs by iteration and

then return to the .soiutionoCsing,le equations.

'a i

Figure 3,2-1. shais-the graphlpf the system,of-equations
#

Cx y = 5

= 2x - 3

(dine )

. (line m)

4

't

a

..- .

We know, of course, that the solution pf this system of equations
_ .

is found at point P of the grapfr But here(we want to use the graph
7,-,

instead to justify our iteration procedure,)

We convert the equations of lines' 1 and m to the following:
1

y = 5 x

x

vik (line £ )

(line m)

4

.12



440. 3.2 - 2

Be sure to -satisfy yourself that the algebra.is correct. Notice

a

\

..-

thae.one-equation-is solved for.y in terms of x, the other for x

in ,terms of y. I

. We start with
,

an arbitrary choice for x, xi = 0. Substituting

this into the equation for line ./ gives yl = 5. Substituting 5 for

y-in the equation for line m gives x2 - 4. Continuing to trade back
\.... ,

and forth,between the two equations, always substituting the current

"(ralue of x or y to pbtain anew value for the ether, we obtain I

n xn yn

1 50

2 14

3 32

'4 23

5 2.5 ---24 2.5

6 2.75
41°1r

2.25----+

7 2.625 2.375----*

Table 3.2-1

The arrows (show

how each value

contributes to

the next.

What is going on here? What is happening is that we are slowly

converging on the solutions It and y of this system of equations.

We can see 'this on the graph. xl - 0 is a vertical line, in fact

the y-axis. When we substittite this x value into the equation'for

line 2. , the y value that result?; (yl 5) is the y value where

these two lines intersect as shown in Figure 3.2-2.
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3.2-3

Now.y = 5 is a horizontal line. When we sfibstitute this value

into the equation for lige m, the resulting x value (x2 = 4) is the

x coordinate of the intersection of jr = 5 With m. This partof our

rail is marked in Figure 3.2-3.

We have only to continue this process to see how Table 3.2-1

is formed. Additional segments of our spider web trail toward P are

shown on Figure 3.2-4.

, 3,1-i 3 _
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3.2-4

The :ument we have presented and Figure 3.274 shoilld justify

claim t t the values of xn and yn in Table3.2-1.are converg-

ing on (x, );-'-the solution of this system of equations. I

.

But wait a minute. Why should we go (to all this work when we,

have much more straightforward methods of finding solutions to.eys-

teas of equations? The answer to this question is important. There 11

are many more complex equations that also respond to the iteration

technique that we have used when none of the other methods work. We 11

have developed and justified thtechnique with %Ample exampl*.

Now let us apply it to a more difficult problem:

'2

EXAMPLE 3.2-1 Solve for y: y = 2-Y .

2 -ySolution: y = 2-/ is a complex equation indeed. One

possible way to solve it is by trial and error. Choose

a mplue of y, substitute it, simplify, and see if t ?e

,equation balances. For example, if y = 1

2-Y
2

= 2-(1)
2

= 2-1

but since the left side of the 'equation}/ 1, we are not'

too close.

Another route to a soldtion le to use iteration,. To

do this we introduce another 'variable,. 'x, to give us a

second equation. You phould convince yourself that:

2 y 2-x (1)
y = 2-Y is equiv4lent to

2
y (2)



3.2 - 5

The system of equationi may be solved by iteration.

Again we start with -a guess, xi = 0, substitute it in

equation (1) to find yl, substitute this y-value into

equation 2) to get :X2 and so on. You should program

your calculator to check our progress in Table 3.2-2
*

(see exercise 4): .

0

.

n xn
yn

1 0
6)

1--"P
"-1°- /

1 0.5

3 0.25 --I' 0.84+

4 0.71-14 0.61+

25 0.707
+

26 0.500
+

0.707
+

Table 3.2-2

)Our original equation did not call for x, so we claim
.

y 1 0.707

*
An algorithm to accomplish this is:

1)' 'Set a = 0. (This is x1)
1

2) a 2
-a

, display-a. (This generates yn)

3) Stop if enough pairs have been generated.

4) a a2, display a. (This generates xn),.

5)' Go back to step ,2.

S
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1

and use them to solve other problems.-

4

- 6

You should check this in the original equation to see

that it balances (approximately)'.

To show how our iteration process relates to the graphs of

these functions, Figure,3.2-5 displdys the first several steps:

.

You need not be concerned at this time how the graphs themselves were

constructed.

In the stercises you will.explore these techniques further
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Exercise et 3.2

1) Program your calculator to carry out

systeM of equations on page 3. - 1.

process is:

1. Set a = 0

2. .Let a 4- 5 -a, display a-

3. Let a k- (a+3)/2, display a

Stop when enough pairs have been

5. Go back to step 2.

Usp this program to calculate xn and yn
until

3.2-7

the iteration for the

An algorithm for thiei

(Thin is xl)

-(This displays

(This displays

generated

the two values ,

(separately) remain unchanged to 3 decimal places. (You should

check your first few values against Table 3.2-1.

2) Compare your answers in (1) to the graph in Figure 3.1-1.
J

Our answers seem reasonable?

3) Solve this same system of equations

by another algebraic method. -How does

x + y = 5

y 2x - 3

this answer compare

with your iteration solution of exercise (1)? .

Program your calculator to carry out the iteration of Example

3.2-1. The algorithm for this is given on page 3.2 - 5. Use

your program to find x6 and y6 to 2 decimal digit accuracy.

(You may want to build counter into your program, but it is

enough here to cunt s eps yourself.)
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,,3.2 7 . 8

5) In the iteration of Example43..2-1, to what 'value does x

appear to converge? (See Table 3.2-1) Use this value and

the equation, y = 2-x to express y irr radical form.

6Y How does your answer in-(5) for y compare to Y26 in Table 3.2-2?

7) Does your answer in (5) check in the original.equation 2-/ ?

. (8 - 14) In these exercises we seek an iteration solution for

3y - 4x =--3 (1)

3y - ix = 3 <2) '

8) Solve equation (1) for x in terms of y.

9) Solve equation (2) for y in terms of x.-
10) Develop an algorithm for-generating successiv approximations

x nand y
n

to this system.

11) Program your algorithm of exercise (10) and use it.to converge

on values bf x and y: What are these Values?

12) Figure 3.2-6 is a graph of the system you have solved. AO

do your answers in (11) compare with the coordinates of P on

the graph?

i

1-241LIT-
s

F4,Y4--3±-11
1

4 ! 1-
I ' '
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. 3.2 - 9

13) Copy,Figure 3.2-6 on coordinate paper and sketch the firf!t

,few steps.of your _iteration (x1 = 0, yi = 1,-x2 = 11.5,

Why do you suppose that this, type of iteration is called a

stepladder?

14) Solve the, system of equations given before exercise,(8) by

another algebraic means 'and compare with your answer.

(15 - 22) These exercises ate designed.to expose some problemg as-

sociated with iteration techniques. '

15) Recall the system of equations of page 3.2 - 1:

+ y = 5 ( )

y = 2x - 34 (n)

We solved equation. Cl) for y and equation (m) for x. Surely

it would have been 'easier to
leave

equation (m) solved for y .

and solve equation (B) for dc:

= 5 ( 21)

y = 2x -3 (m),

But what happens now when we start With x = 0 and iterate be-
,

'tween equations (m) and (i!)? In a table of the formoeTable

3.2-1, give values for xn and yn through n = 4.

16) We say that the values in exercise (15) are diverging., Why?

(It will be helpfill if you look up the words diverge and, con-

verge in the dictionary.)

.-
17) Suppose we had a system of equations which we converted to the

x = f(y) (A)

y = g x) (2)

1 5 ()
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0

RI;

3,2 - 10

40
only to find that iteration of these ,equations diverged.

What does your answer to exercise (15) suggest would be a

reasonable procedure to' convert your system to one which Ab.

would converge?

'Solve the system of equations fot x atle; hfiteration:

19).1 Try

fit

What

.

y: = 2x

,

x y - 1
4t

to sollie the following system by iteration:
41

r
2x + y = 3 *

1

A

2x - y = 1
1

is the4iNfation betweeA xn+2 and'xn? Between .y2- and yn?
\

20) Copy the graph-of-Figure 3.2-7 on coordinate p'ap = d ttace

the kteration route starting with xi 0. What ens?

ft,

if

21) Does it matter whil90

0

0

r
-...471417:3.

e

! X

-1 , *

u ion it; solved for x and which for '!?

.o

1



It
4,

3.2 - 11

,I.
.

I, 22) If the slope of one linear equation is the negative 'of the ,

)
..- slope of the other:this iteration technique does not work.

*
What are the slopes 'of the lines in exercise (19)?

23) Solve the following system of equations by iteration starting

With x
1
= 0.5.

;c2

x + 2
4

14) Suppose in exercise (23) we were -only interested in the value

*.

of x. We could combine the two recursion equations into one

-by the following steps (copy and complete):

J1
X = '(

4
) 2 substituting from equation (1) into

equation (2)

( ) + 1
simplifying

.

25) To iteratirfrom xn to xn+1 we ipuld use this last equation

with scripts:
.

xn+1

26) Soi/e, the equation in exercise (24) 1y programming the iteration

in exercise (25).

2ig Rkwrite the equation in exercise (24) as a quadratic equation
4. 4P

w

equal to zero.

28) Check your solution in exercise (26) in t'he equation,of exer-
a

cise (27).
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3.3 Some Applications of Iteration

3.3 - 1

Consider a thin rectLgulat-seial" plate ABCD. Sides AB and

CD are kept at 0
o
'C by melting ice packed against them. Sides A-13

and gU are kept at 100° C by boiling water. (These temperatures

cannot be maintained at the corners, of course, but thiswill not
4

affect our problem.) Clearly the plate will vary in temperature

from point to point. We seek the equilibrium temperatures at Otnts

P
1
and P2. See Figure 3.3 - 1.

100 °C

0 C

Figure 3.3 - 1

100° C

To solve this problem we employ a thermodynamic principle:

The temperature at any point in the metal sheet is the average of

the temperatures at "neighboring" points. Thus, for example, the

temperature at P1 is the'average of theitemperatures at E,' P2, F,

and G. Thus, if we represent the temperatures at Pi and P2 by t

and T,,-we have:

0 4- T + 0 + 100
4

0 + 100 + 0 + t
A

*
This and some other problems of this section were communicated to
u$ by P. Rosenbloom and S. Schuster.

4

s.

1 53



or in simpkified form as:

t= '+100
4 . .

t+ + 100

EXAMPLE 3.3 -1.

of 'equations:

t=

V.

Solve by iteration techniques the system
. 0

Nit

-""13\3 - 2

T +.100
477

C 100
T

4

9 .7

Splution: . We need only.guess a starting value, say

t
1
= 50 to initiate the iteration:

Table

3.3 - 1

n

1

2

3

4

5

.

to

50

34.37+

33.39
+

33.337
+

33:333+2

T
n

37.5

33.59
+

33.34
.I.

33.334,

33.333
+

Continuing with this iteration suggests that temperatures
0

at.P
1
and P

2
are each 333 C.

EXAMPLE 3.3-2 Solve the system of equat,Lons-

3.3-1 using t1 = 0.

Solution: This time the iteration would be

I

n Example

15,1
r



3.3 -3

Table,

3.3 - 2

_1

2

3

4

5

to Tn

0

31.25

33:20+

33.32+

33:333-

25

32.81
+

33.3e

33.33+

33.33+

You should notice two thi4gs about Examples 3.3-1 and 3.3-2. First,

the iteration converges to the Same value. Second, the itereMton in

Example 3.3-2 is slightly slower in converging.

We ha've "solverethe problem posed on page 3.3 - I only crudely.

In example 3.3-3 we will show the ditection we would go in refining

this kind of problem'

EXAMPLE 3.3-3 Find Talibrium temperatures at P1, P2, ..., F

00

3

no° P4

P2

P
5

P
3

L

P6

Figure 3.3-2.

Solution: .
Let the temperature at Pi be ti

(for i 2, .. , 6)
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L p.

Then we have:.

0 + t
2
+

4
+ 160 ,

.

.

3.3

t
2
+ t

4
+ 100

4

0 + t
3.
+ t

5
+ t

1

$

4

t1 + t
3* t 5

4_
,

0 + 100 + t
6

'+ t
2

. 4

t
2
+ t

6
+ 100

3 . 4

t

t
1

-1-t
5
+ 0 + 100

4

t
1
+ t

5
+ 100

4 4

t
2 6
+ t' + 0 + t

4

4

t
2
+ t

4
+ t

6
4

a.
t
3

+'100. + t
5

4

t3 + t
5
+ 100

t'
6 4 4

.

Now we can set up our chart for de;ermining these six

values.' We lave arbitraillychosen'initiat value of all ti = 50

n

1

2

3

4

a

t
1,n

*

50

t
2,n,

t
3,n t

4,n
t
5,n 6,1

.50 50 50 50 50

Table

To fill in this tabl- use the iteration equations and the

50 + 50 + 100 so.last value of the approp late t's. Thus,tii =
4

50 + 50 + 50
22 4

, etc. You will be asked in Exercise (1)

I

*
The first subscri4,number designates the point which the temper-,1*In.
represents, the second the iteration step. You need not worry about
this notation.

15 fi



3.3- 5

toextend this table.

Exercise Set 3.3

1) Continue the itesetion in Example 3.3-3 to n = 4. Use direct

(not programmed) calculatioAnd round answers to whole degrees

to simplify computation.

2)- What regularities do you find in your values in exercise (1)?

Justify theseregularities by reference to Figure 3.3-2.

3) We could have simplified computation in Example 3.3-3 a great

deal by taking advantage of the symmetries of Figure 3,3-2.
i

Let t be the temperature at OcrinttPi, P3, P4,and P6 and

%
T be the temperature at P2 and P5. evelop two (instead if six)

iteration equations and find t and T t the nearest degree. Do

your answers check with exercise (1)?

4) Use iteration techniques to find equilibrium temperatures at

I P
l'

P
2'

..., P
6

on Figure 3.3-3.

0°

too°

1
P2

P3

P4 P5 D6

100°

Figure 3.3-3

1 5 7

100°

Be sure to' notice

that only one side

is e.



4

3.3-6

5) Use iteration techniques to find equilibrium temperatures

at P
l'

P
2'

and P3 on Figure 3.3-4.

100°

Figure 3.33

(6 -10) Maze or labyrinth problems are quite similar to the physics

problems we have just studied. In what follows we will treat probability

ideas very Informally (but correctly!). Consider the maze of Figure

3.3-5. Suppose that this

'Figure 3 . 3-5

maze is made up of a series of tunnels meeting at Cl, C2. ..., C9,

and with the open ended tunnels representing exits. A prisoner wanders

through this,maze randomly. Each time he comes to a corner (one of

the C's) he rests a moment and then goes on,picking any of the four

directions quite by chance. (They all look alike"to him, even th.
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3.3 -

direction from Which he came.

Of douise it is possible that the prisoner will wander forever.

The chance.of this is in fact so small we eliminate tt(: We assume
Y'M

that sooner or later he will emerge from one of the open exits. Au

but two of the exits are guarded by guards (as marked (G) but the two

exits fro1C3 are left unguarded. We want to know the chance of the

prisoner escaping from each of the corners.

To solve this problem we make the following assumptions:'
A

(1) Chance of escape at a guarded exit: 0

(2) Change of escape at an Unguarded exit:

(3) Chance of escape from a corner Ci: z 1
*

, ,(4) The chance of escape atigny corner is the- average

a
of the chances at adjacent corners and pits.

0 + p2 + p4 + 0
(For example pl

4 .)

6) Write the recursion equations for the probabilities of escape

from corners C2 - C9. -(

7) Use your equations in exercise (7) to determine by iterati.On

the vilues of pl, p2, p6, accurate to two decimal place

(Use any initial values of fad-, 4)1, 0 4 p 4 1.)

8) In your answer to exercise (7) which is the best starting

point? the worst? Do these answers conform to your expect

tions in looking at Figure 3.3-5?

*
,It should be clear to those at all familiar with pr ility that in
these circumstances 0 < P c 1., In fact,assumption (3) is not even ,
necessary tothis problem. .6 .
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3.3 - 8

9) Worse days ahead. Another maze. With apologies to Frank

Stockton, a lady lost, a tiger'guarding one bank of exits -

charice of escape there 0.. We seek her chance for escape from

each corner of this-maze. (Her -choice? are random as in
A

EXercises 6 - 8)

c

11' UCgOe C
the

+ler 1

3, 0,1-sCDiC

Note: The-re is another approach to this kind of problem that students
with computer or microprocessor access may wish to explore. This
is the method of simulation. The computer simulates the condition
of the problem and then carries out a great many "trials: (Hundreds
of ladies are sacrificed in the process - theoretically.) Then the
.computer assigns as probability of es ape from a given corner the .

number of escapes from"that corner di ed by the number of trials
from that corner..

10) Make up your own maze with new conditions (for example more or

fewer. branches It corners) but no fore than six exits.

11)
*

small country has an army officer corps of 1000 officers.

A new promotional system is inaugurated with thelollowing

annual conditions:

This exercise is due to A. Engel.

1
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3.3 - 9

rt

Generals: LC.,/ 20% retired
G

/\ 5% promoted
r

Colonels
C

20% retired

207` promotedI 4wo promoted

Majors 20% retired

200 commissioned

This promotion system may be represented by means of thre;1

replacement statements. Fonexamp1e, for generals mrd'ha'vel

. .

G 4-- .8G * .05C

1
promotions .

because 20% retire
*

State the replacement statements for colonels, C, and.majors,

-M., (Don't forget to subtract both promoted and retired=)

12) Choose an initial number of officers of the three rank's subject

to the condition C + C + M = 1000. Make a table to represent_'

the annual army status. CoMpute 'numbers of officers for n = 1

(your iniP4.al values) to n = 20. (Round numbers to integers.

Why?)
n

4

C 'M
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13) _Demonstrate that theAnitial 'Condition of 1000 officers is

not necessary by repeating the iteration of exercise (12)
40

for

,(a) C = M = 0, or

(b). G = 2000, C = 0, M = 0. (In this country

the president was elected on the promise that

he would appoint all his supporters generals.)

14)- When these systems reach equilibritim so that the number of

generals', colonels, and majors no longer Change from year to

year, the "4---7"in your replacement statements of exercise (11)

will be replaced by =. Make this change in, your three equations,

solve them algebraically and compare:: the answers with your.

ariswers_to exercises (12) and (13).

a
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3.4 Undetermined Coefficients

1011

3.4 - 1

I..

You have seen by'now that calculators and computers are

great at stlewii,g out long lists of numbers. All you have had

to-do is.program some recursion function with a loop-and you halle

a machihe like Figure 3.4-1;

Figure 3.44

41'

A simple example of this process is the sequence (2n-1). It is

processed as in Figure 3.4-2.

Figure-3.4-2

163
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Without -a signal to stop such a machine will continue to spew

out-odd numbers ...327,329,331,°..., 1000083,1000085,1000087, ...

untjl your computing instrument breaks down.

r.46-we havethe quite reasonable (and only slightly limited
*
)

FUNCTIONS LEAD TO NUMBERS

Here, in fairness, we explore the converse notion:

NUMBERS LEAD TO FUNCTIONS

and we set out to develop some means of carrying this out. Using

4

the analogy of our same function machine, we have the situation of

Figure 3,4-3:

Figure 3.4-3.

4-0), ;b.),

This is not 3ust a theoretical situation. You can seeclearl,

what is meant by the following two person exercise.' Each of. you

should program the following algorithm.. (Do not let your partner

see the program steps!

*
Not limited in this text, but limited more generally by thefact
that there are mathewatical functions on many things that are not
numbers, geometric shapes for example.
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1. Let n /

4 3.4 - 3

a4----f(n), display a
3

Tore f is any function you choose. It can be as

simple_ as 2n or as complex as, say, in en - tan
-1
n/sinir

-3. When you here accumulated enough values, stop
ft.

4. n

5; Go back'tp-stepl2.

Now set your calculating device tO run (or clear your display on a.

microprocessor) and trade calculators. Each of you will stave a

machine )hat Wilt generate. numbers. Your challenge is to decide

without looking '= what is the functiop of step 2 of the algorithm.
. .

Unlesi the function is quite simple, -you're probably: Stumped:-
1

11Be assured that this. is far more than a`- little problemdesised
.

to make you work in-the mathematics classroom. Much scientific ac= 11

4 ..

tivity 1.s of eiactlythe form described here. The scientist cqllects

data and looks for regularities in that data. And .the best.kind of I
. .

, .

mularity is i-fdi-iCtional- equation that will allow him to predict

-oe

4

the future - or uriklown parts of.the past.

In most of the rest. of thi., section we restrict ourselmeS to
- ,

polynomial sequenC&s; in exercise, ( 6 ), however, Veil hint at

low the idea is extended. Todeall4ithpplynomial Sequences we
.

apply:the following rule:

a

r

'WHEN, AY ARE FIRST COrCTANt,,TiiE POLY-

NOMIAL FUNjTION IS Cg DEGREE n
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Isn't that a wonderful rule? Well, we'll have to admit, no,

'3k-\
not yet. We first have to show what it means. First we'll

show you (or remind,you) what we mean by the degree of a poly-

nomial,

`POLYNOMIAL
*

r DE

ax + b 1

ax + bx + c 2

ax3 4- bx
2 .+ + d 3

(linear)

(quadratic)

(cubic)

ax
n
+ bxn-1+ ...+q n- .(n-th degree)

A

Simple enough?, It'should be. The degree of'a polynomial is the

-highest power of the variable.

what that degree is.

Now let us seeghow we ,determine

EXAMPLE 3.4-1. Determine the degree of the polynomial

function.f,. for the following.dat.>a.

n. f(n)

0

2 4

c>

3 20
.4-1

4" 54
5 112,

477 200

: -*
Here a , b , c , etc., represent constants like 6 or 0- .

are called parameters.For a specific quadratic for examp-11.
we might have a = 1, b'= 2, and c = 5. The funceienw%40WAMPh
be x2 + 2 + 5 But since ax2 + bx + q'is a general atat'ement,
a, b, and nary from function to function. This leads Ito'

lr
the contractory seeming (and upsetting) idea of a parameter as
a variable constant!

4
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3.4 - 5

Solution: We determine the dilferences

(An)* for f(n)

n

1

2

3

4

5

6

f (n)

0

4
16

Q1 A2

54

112

200

4

34

58

88.

12
--;;; 6

18

6

24> 6

30

(-:

Notice that these difference&. are found merely blip

subtracting values in the preceding column. Since

.arethe first differences that are constant (theyA3

are .each. 6), f(n) is of'degree 3.

Our solution of ExAmple 3.4-1 tells us that.this data

leads to an equation of the form:

f(1) = an3 + bri2 + cn + d

1

Our task in'leciding what specific function f is, now reduced
,

to finding -the values of a, b, c, and d. These are the undetermine

coefficients of this method. We will.see how to complete thist,

IC

Ais the Greek letter delta. It is often used in mathema-
tics to represent a differencc ri change. For example,slope
is often defined

Px
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task in Example 3.4-2.

EXAMPLE 3.4-2. Find the function, f, for Example 3.4-1.

Solution: We know from Example 3.4-1 that we seek

a, b, c, and d in

(1) f(x) = 'an
3
+ 2

cn + d

We can find them by using our original data in

Tahle 3.4 -h. For example we know that when n-1,

f(n) = 0. Substituting this into (1) we have:

(2) 0 =a+b+c+ d

When n = 2, f(n), = 4. Substituting these

values in (1)':
*

(3) 4 = 84+ 4b + 2c + d

e
When n = 3, f(n) = 20:

'MMIM411.11.1..

(4) 20 = 27a + 9b + 3c + d

When n = 4, f(n) = 54:

(5) 54 = 64a + 16b + 4c + d

Now we can stop. We have four equations in four

unknowns and we can solve them for a, b, c, and d.

Solving them is messy but nct hard:

Yirst eliminate d:

Equation numbers

(6)- = (3) - (2) : 4 - 7a + 3b + c

(7) = (4) - (3): 16 = 19a 4. 5b + c

(8) = (5) - (4) : 34 + 7b + c

Then Aiminate c by the same process. n these new

pluations:

(9) - (7) - (6) : .12 - 12a + 2b
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0 0) = (8) - (7) :

and b from these

le (11) = (10) - (9) :

and this giving, final

a = 1.

3,4-7

11 = 18a + 2b

6a

Substitute this into (9) gives:

12 = 12(1) + 21;

which leads to

b = 0.

Using these values in equation (6 gives:

4 = 7(1) + 3(0) +*

which leads to
--Cy.,

c = -3

And finally, these then valued in (2) yields:

0 = 1 + 0 - 3 + d,

or

d = 2.

-
Thus we find that our undetermiftd coefficients

are a = 1, b = 0,, c = d = 2. We plug them

. into our function to give

f(n) = (1)n
3
+ (0)n

2
+ (2)

or

f(n) =n3 - 3r + 2

16:i
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We have already said that our method of.undetermined co-

efficients is limited to polynOmial equations. TWo other limita-

tions are of concern here:

(1) We must have enough terms to generate the needed

differences to determine degree. Thus in Example

9.4'1 we needed at least five data pairs. (Why?)

(2) We assume that the pattern continues.

Exercise Set 3.4

(1

1)

- 4) Determine

n

the degree

f(n) 2)

of the functions

3) Ti

in each exercise:

h(n) 4) n 'p(n)

0 4. 0 1 0 3 0 5*
1 3. 1 4 1 2 1 14 ---,

2 6 2 7 2 .9 2 21
3 13 3 10 3 3 30 3 26
4 24 4 13 4 71 4 29
5 19 5 16 5 /38 5 30

5

5) Find f(n) in Exercise (1) .i

6) Find g(n) in Exercise (2).

7) Find h(n) in Exercise (3).

8) Find j(n) in Exercise (4).

9) How does the inclusion of the pair (0, f(0)) simplify

exercises - (8)?



10) Find f(0,

n

for the data: 11)

f()
0 0
1 -12
2 -18
3 -18
4 -12
5 .0

3.4 - 9

Find f(n). for he data:

n

.0
1

2

3

4
5

. f(n)

10
8
6
4
2

0

(12 - 15) These exercises are designed to justify in part the

method we have been using without proof. We will consider the

case for a quadratic function

f(n) = an
2
+ bn + c

12) Copy and complete the table

/( f(n)

I

an
2
+ bn + c

0

1

2

3

4

.a + b + c

13) Complete, in terms of a, b, and c,, Al and A2 columns

for\your function in exenlise,(12).

14) What\is L 2 in exercise (13)?, Does this confirm our rule

for determining degree for a quadratic?

15) Confirm the degree law of page 3.4 - 3 for a cubic, that

is
.

f(x) = an
3
+ bn

2
± rn + d

by the methods of exercises (12) - (14). You will of course

need a 03 column.
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(16 - 20) In these exercises we show one direction taken

for non-polynomial 'functions.

16)- O, course many functions are not polynomial fdpctions.

For example, consider the function f(n) = 2n

n f (n)

0, 1

1 2
2 4
3 8

4 16
5 32.

Complete Al ,A2 , and Z' columns. What is

happening?

17). To determine equations from data like that of exercise .(16) -

assuming that the function is not known as it is here -

mathematicians must look to other techniques. The rapid

growth of f(n) suggests the possibility of an exponentialk

function here and one way to "tame" eiponen 'al fun'etions is

"to convert them to polynomial functions by t king logs. Here

I-

if we substitute (in the exercise (16) data) log f(n) we

have

0 0
1 .301
2 .602
3

4
5

Copy and e table to 3 decimal digit accuracy.
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18) Determine the degree of the polynomial relating n to

log-f(n),by forming. the An columns until they are

constant.

19) Let y = log f(n). Set y equal to, the polynomial in. n

whose degree i- ntified in exercise (18). Use the data

' of exercise ( o evaluate coefficients of the polynomial.

20) Replace y in y answer td exercise (19) by log f(n).

Your result ih uld now be of the form

log f(n) = polynomial in n

Write each side as a power of ten:

101°g f(n)
16polynomial in n

Show that your answer simplifies to the expected result

.,n

(21 - 24) These exercises show how the method of undertermine4

coefficients- may be applied to real data.

., 21X Draw three circles on.a sheet of scrap paper and place a

penny , p, and a nickel, N, in the end circles as

shown.

4.

1

We want to know the minimum number,of moves necessary to

reverse the positions of the nickel and the penny according
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\\,

to the following two allowable moves

(1) a coin may be moved to an adjacent circle if

it is empty
. c\

(2) a coin may jump over one coin of the opposite

type if the circle beyond it.is empty.

How many moves does this task require?

22) Nuw we extend the game to two coins of each type and

ill five circles.

By the same rules, what is the minimum number of moves

that it takes now to exchange positions? (Be careful that

you don't get yourself blocked.)

23) Extend the game
C

to three coins of each type and

seven circles, and then fouvi coins'of each type and

nine circled-. . Make a table to record your data.

n f (n)

1

2

13
4

n - number of coins of each.type

f(n) minimum number of moves to

complete the reversal of

positions
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Mb

24) Find -the function f in-your data of exercise (23).

25) Challenge your feighbor to a calculator duel. Each

of you'pFogram a polynomial function of degree no higher

than 3, and with no more than 2 terms into your calcu-

lator. Use the algorithm of page 3.4 - 2. Exchange

calculators and see who can determine the function first.

This must be done by using The data provided in Tuts mode.

It is not allowed to examine program steps.

4

a
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3.5 Mathematical Induction

. Mathematical (or finite) induction is an important mathema-

tical method of proof which is often confused withother similar

terms, in particular scientific induction and deduction. For that

reason we will,. focus on mathematical induction by comparing it

.1 with these related terms.

In science induction and deduction represent two contrasting

4
approaches to problems.

I/ DEDUCTION: General laws apply to specific cases

INDUCTION: Specific cases lead ta general laws.

Now deduction is a pro0 cess used in mathematics without difficulty.

This method was the basis of the proofs you developed in geometry.

,But induction as described here is not a strong enough method for

I/ mathematical proof. The problem is that we cannot be sure that

we have taken into account alL cases. We will show you this by means

of an example we met in another context earlier in, this chapter.

EXAMPLE 3.5-1 Prove by (scientific) induction that

11 +,12
4 +e._ v

1/

for any finite numbei of twos is always less than 2.

Solution tempt: We check the truth of our state-

ment for various numbers of twos. (Confirm these

11

values by calculation.)

16'6
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One 2: 07.= '1.5- less th &n

Two 2's: 112 + =.1.9- less 'than'?

Three 2's: 12 +12,-7= 1.97 -1e han-2 .-

Four 2's: 2 +yr.).2.-7-1-7 ... 1 less than 2 II

Five 2's: 42 4-t5;i77--411.a.=. 1.998 less than 2

Six 2's: 0 4.477,z777111177. 1.99947. less than 2

Seven 2's: \12 +
2 +42 4. = 1.9997 II

Fifteen 2's: 1.999999998-

less than 2 $

less than 2 1

Here we're faced with two insurmountable probleme.,First,

our calculator soon doesn't hive enough accuracy and evenil

suggests that the-theorem is untrue. For my-calculator

(ten digit accuracy) for example:

Seventeen 2's: 2.0 ? 1
The second problem is that even with an "infinitely"

, .

IIaccurate calculator, we could never list all cases. Thus

mathematical prag by scientifi induct/9n fails.
II

lkWe have seen that scientific inducti cannot be a mathema-

tical technique. Before we leave scientific induction, however, we

should point out.that it is still an extremely important technique

1in science. What it lacks is only the'surety we seek in mathemati .

This final lack is the-reason why wc hear of so many scientific
11

theories, whose strength is supported by data collected over centuries
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Still therd exists the possibility ofdisproving one of these p

theoties by displaying a single exception. An example of how this

works may be seen in Newton's Theory of,Gravitation which` was ac-

ceptedcepted by scientists for several hundred years until Einstein

found exceptions that required modifications in that theory.
N

Let us return to our example know to see how we can prove

it by the method of mathematical induction:. We will then formalize.

that process.

EXAMPLE 3.5-2 Prove by mathematical induction that

11

i
12 +.12 2

for any finite number of two's is less than

Solution: We start as in Example 3.5-1:

One 2: fi = 1.5 Less than 2

But now we recall the recursion procedure we used

to get from one number of 2's to the next:

xn+1
4247in' where n the' cumber of two's

so far. .

. . .

IWe argue that

xk 4 2''

2 + x
k
< 4 (adding 2 to each member)

II /

. klY11---3c < 2
: (taking positive= square rot

x < 2 (since sn+
1
... 074T

n)
.k+1 ,

11

Lr
1

Thus we' see that whenever xk <2, then xk+l < 2.

Using this fact and the fact we established earlier,
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ler

I

that x
1

2, we have
.

k = 1

k = 2

k = 3

k n
. ./

lc
1

<

X2 G

X3 <

x4 <

3.5 - 4

xk
2 implies x P

k +l

x- 2

This, procesS will tontinue and we have proved that

the radical. expression is indeed always less tha2,.
.Let us apply the proceis of ,mathematical induction to a simple

*
1

seand.familiar physical model. We line,lip dominoe,s stood on end in

such. a way that when one .dorrilLLo falls so too does the' next.
.

'4 """s.--.
. .

111

111

.
,0- 11.11.

4. 5 6 -7 1 8 9 10 .11(12 ....
- -,2

. , -

NOw tip the *irstdomino againt. Lhe second. Doing so starts an
'1,,zifi-; e

inductive proces-s31 1: ti6tes.Q., 2 tips 3, 3 tips 4., rt tips n+1,...
0 11810. matterthow manydominoes are lined up in this way they will ALL

fall! Votice the to parts of titiat we did to tip/ all dominoes : I
,...

.... -c ,
w_

... 4-..

(19e tipped the first domino
. ,

.
.'

:(2) We had the 'dominoes set" up soy that each -domino tipped *I
.

't.
wbuld tip the next. .

a. t
41,
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Stated formally we have justified

.9t

THE PRINCIPLE OF FINITE ypucTiok (11)

For any statement- S(r1) about n, an integei
.

> when

(1) Si) is true, and

(2) whenlever S(k) is tcje, then S(k+1) is

P true (k an integer.> i)

thOh S.(n) is true for all n > i.

.16
'In this principle i- is most often taken to be equal to one and

the principle then applies

In Example 3.5-2 we
A, 147

by showing xl = 1.5- < 2.

to dee natural numbers.

established Part (1) Qr"thelrinciple

In that same example we established Part

(2) of the principle by showijg that xk < 2 implied x104 4 2.-
1

Now we'll use the principle in a new example.

EXAMPLE 3.5-3. Find a.formillalbr
; .

1 1 1 a 0S + + + ... +
--) n 1.2 2.3 3.4 n(n +l)

it by the Principle of, Mathematical Induction (PFI).
.

Solution: Firs we, seek a formUla by examining Sn

12
o

fof n = 1, 3, 4'

S2

'1
=

,'

1
2-

1

5
- t

1-2

1

3
+ -

3-4
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Sit =.S3 ,
1

4.5

1 16 4
26 na

3.5 - 6

4

A rea onable guess for a formula for S is S n
= ETT.

NoidiFeet out to prove that this formula works."fr .

Part (1) of PFI. We must show Si ofthe series

(Si =
1

) is equal to Si of our guessed formula
1.2

(S1 u
1:

). Since both equal I
1+1 7 , we have estab-

. 1'

fished Part (1).

yinarly,we must prove Part (2) of PFI. Given

Frr_ _werflust _
k+1

(k+1)+1 by

recourse to S,, and to our series definition. To

do`-this we proceed as fo llows:

S Hypothesis of Part (2) of PFI

k 1
S
k+1

= + b the series defi-
k+1 (k+1) (k+2)

ni ions for n = k+1.

k(k+2) + 1 k
2
+ 2 + 1

(k +1) (k +2)' (k+1) (k 2)

(k+1)
2

k+1 k+1

4(0-1)(k+2) k+2 (k+1)+1

Notice row in proving Part II of PFI, we are given that our
t

formula is true for n k. (This is like saying, that we are Open

flb
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in this-part that the OP domino will fall.) We then use this

hypothesis to prove that we can get the formula for n by

recourse to our given _iniormation,in this-case the serieg defini-

tion.

The Principle of Mathematical rhcfaction is a most important
Oh.

one. When Guiseppe Peano reduced the number of postulates about

number systems to five, this principle was one of the fillet In fact
G

it provides the mephod of proof that is basic to development of

Peana's system beyond his five axioms. You will have an opportunity-

to apply ths important principle to the exercises.

Exercise Set 3.5

(1 - 5) In 'these exercises you are given a statement about a
4

.

natural number,_n. By trying a few values of n, decide which state-

ment; you think are true and which ?aide.* Do not try to prove any

of them. (Your calculator should help.)

1) 2n
2
+ 1 is a prime number.

2) 2n ?. n3.

3)

4)

-2.4n + 1 is ,divisible Ly .3.

2
+ n + 4L is a prime number, given that the following

numbers are among the primes: 43, 47, 53, 61, 71, :$3, 97,

113,111, 151, 173', 197, 223, 251, 281, 313, 347, 383, 421,

4.61, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033,

1097, 1163, 1231, 1301; 1373, 1447, 1523, 1601.

A
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5) The sum of the first n odd numbers is n
2

.

6f The numbe?' of chords joining n points on a. circle is

n(n-1)/2.

7) In exercise (2) find a natural number value of n for which

the statement is true. Do you think that this statement is

true for all values of n larger than this?

(8 - 12) We seek to prove the statement of exercise (5): The
.1

sum of,the first n odd numbers is n
2

.

8) True or falj: The n
th odd number may be represented 2n-1. .

9) The.following is equivalent to the statement we wish, to

prove: 1 + 3 + 5 + + -(2n-1) = ?

10) Prove Part (1) of PFI for your completed statement in (9).

11). Prove Part (2).of PFI for-your completed statement in (9):

that is
Given: .1 + 3 + 5 (2k-1) = k

2

Prove:c 1 + 3 + 5 + + [2(k+1)-1]= (k+1) 2

Wilt:. add the underscored term to both sides of the given

equation.)

12) Do your proofs in OM and (11) establish the truth of the

theorem 1 + 3 + 5 + (2n-1) = n2 for all n?

(13 - 16). We seek to prove statement (6): The number of Chords

joining n. points on 'icle is n(n-1)/2.

13) Prove Part (1) o PFI or this statement; for n = 1. .(tiow

'many chords are th- Is this the same value as that of
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14) To prove Part (2) of PFI for this statement, recall that

. we have

Given: Joiriing k points arc k(k-1)/2chords.,

What value asp we want to establish for k+1 points? (Hint:

Substitute k+1 in the formula.)

15) Consider the partial diagram

fnr k points. How many new

chords would the !+1 point add

to the figure?

ki
16) Use your result in Exercise (15) to finish PFI Part (2) for

this theorem.

-
17) Prove Mr PFI that 1 + 2 + 2 2 + + 2n 1 = 2

n
1.

. -

18) The triangular numbers are the numbers formed by placing

spheres (like billiard balls) together in triangular arrays

(where,n is the number of balls on an" edge.)

K

c9h t
(90 0 (CO 0

t
1

= 1, .t
2
= 3 t3 = t

4
= 10 t

5
= 15

*Derive a formula for t.1)), the method of undetermilked

coefficients.

19) Prove your formula in Exercise .(18) by.PFI.

Isj
4
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(from G, Polya, Induction and Analogy in Mathematics)

"Look at the mathematician", said the logician. "He ob-

derves that the first 99 numbers are less than 100 and

infers henc'e, by what'heCalls induction, that all numbers

are less than 100."'

physicist believes, " said the mathematician,

"that 60 is dilAsible by all numbers. He observes that

k0 is divisible by 1, 2, 3, 4, 5, and 6. He examines a

4-

1.
few.more cases, as 1D, 20, and 30, taken, at random as he

says. Sihce 60 is divisible also by these, he considers

the experimental evidence sufficient."

"Yes, b isok at the engineers:-"-said the physicist._

j "An engineer su ected that-all odd numbers are prime num-

bers.` :4At any rate, 1 can be considered a prime number, he

argued. Then there acme 5, and 7, all_inchibitably primes

Then there comes 9; an awkward case; it does not seem to be ,

a prime number. Yet 11 and 13 are certainly primes. 'Coming

back to 9,'he said, 'I conclu e that 9 must be an experimental

error.'"

What kind of nduction is belog app i d'ih these examples?

Z1) DIFFICULT.-Here is an argument by PF that all billiard

balls are'the same color. We first testa e the theorem:

In any set of n billiard balt`a,.._all n are th same color

PFI Part (1) Clearly any nne b!",iard ball i he same
r. 4

*

color as itself,
4

155
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PFI Part (2) We are given that any set of klbilli.ard

balls are the same color. Here is a set of k +2.

billiard balls:

(k+1) balls

0000... 0000
W merely apply our given argument twice:

k balls

0 000 . . . 0 0 0

k balls
---

)

Since these ,sets overlap, they must all be the same color.

Find the flaw in this argument. Be cafeful. Do not' reject

PFI in the process.

1 S 6

I
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3.6 The Binomial Theorem

All through this course we have been interested in short-

cuts, ways of saving time and energy. .(In exactly this way

laKiness has probably always been the primesmover in man's devel-

opment of civilization.) We now seek one more very useful short-

cut, the means for finding the coefficients of various powers of

a binomial Pike a +'13.

You may check by multiplying (if you have nothing else to

do with your time) the following products:

(PI 4-1)

(a+b)1 = a + b

(a+b)2 a2 + 2ab + b2

(a+b)3 = a3 3a2b + 3ab2 + b3

(a+b)4 = a4 + 4a 3b + 6a2b2 + 4ab3 + b4

(a+b)5. = a5 + 5a4b + i0a3b2 + 10a2b3 5ab4 + b5

15a2 b4 + 6ab5 + b6(a+b)
6

*a
6 + 6a 5b + 15a

4
b
2

20a3b3

Those are enough to suggest some very 'simple patterns followed by

the ,letters a and b. We can eaii; generalize Them:

For (a+b)
n

we have

1 a
n + n a

n-1
b +(Da n-2 b

2,
a
2 n-2

+ n ab
n-1

+' b where the loops represent coefficients to be filled

in. These egularities are as foll(A.q.:



3 :6 - 2

(1) There are n+1 terms.

(2) a starts to the nth power and goes down one power in,

each successive term.

(3) b starts to the 0 power and increases one power in each

successive term.

(4). The sum of the powers of a and b in each term is

alwa$ n't 4

(5) Numerical coefficients increase to the middle and.then

decrease. The kth coefficient.is the same-as the (n-k) th

coefficient.

EXAMPLE 3.6-1 Express as a polynomial (3x - 2y)5.

Solution: We can use what we found for (a+b.) on page

3.6-1, substituting 3x for a and.(-2y) for b in

each term:

(3x)5 + 5(3x)4 (-2y) + 10(3x)3(-2y)2 +,

10(3x)2 5(3x)(;2y)4 (.7;y)5

Simplifying we have:

243X5 - 810x4y + 1080x3y2 - 720x2y3 + 240xy4 - 32y5

Now let us focus on the'numerical coefficients a (a+b)n.

To do this we will extract from the products on page 3.6.- 1 only

n and the coef2iciqnts to form what has been called Pascal's Tri-

angle:

A
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3.6 - 3.

n

0- 1

1 1 1

2 .

.

1 2 1

1 3 3 1

4 -
1 '4 6

5 1 5 10 10 5 1

6 1 6 15 20 15

How can we continue,this pattern? Certainly one way would be to

multiply out (a+b) 7
and copy the coefficients, but some regulari-

.

ties should leap out at you. Before reading on you should try to

construct row 7 by comparini it with earlier rows.

Almost certainly you will have extended the table to give the

following:

5 1 5 10 10 5

6 1 6 15 20 15 6 1 --

7 1 7

4

It is clear that the first and last-numbers are ones and that the

next numbers in are each n. PP-haDs you also discovered'the pat-
,

. tern that produced the other coefficients. If you didn't, look

back at the 15's and the 20 in
sr
row 6. Compare them with thenum-

bers in row 5.



4r 0

5 1,,,5N/,10N,,10,,, 5
6 1 6 15\\//20\//15 .6 1

7' 1 7 1

s,

Now almost certainly you should be ablb to fill in those inner

spaces. They are each the sum of the numbers on either side in

the row above.

EXAMPLE 3.6-2 Express as a polynomial (2x + ;.)8

6

Partial Solution: Continue Pascal's Triangle to find

the coefficients of (a k b)n

1 6 15 20 15

7 1 7 21 35 35 21 7 1

'8 1 8 28- 56 70 56 28

1

Thus we know (a + b) 8 = a
8
+ 8a7

b + 28a6b
2 +

1Substituting 2x for a,and . for b,"we have

(2x)
8
+ 8(2x)

7 0) + 28(2x) 6 0) 2 + and

256x + 512x7
+ 448x6-+ .

In the exercises you will have a-opportunity to practice

this expansio* techniqr. We will then return to it in the next/

chapter.

1G o
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-'`Exercise Set 3.6

. 3.6 - 5

1) Construct Pascal's Triangle to n = 10 from n = 0 witgout'

reference to page 3,6 - 3.

(2.7 5) Use your answer in exercise (1) to expand and simplify

the following:

2) (a. + b) 4

4) .(2x + 3y)
6

31 (a + b)
10

5) (x - y) 5

6) Complete Example 3.6-2 of the text.

(7 - 14) Give only the requested term for each expansion. (Re-

fer to your. answer in exercise--(1).) '-...:____

7) (a + b)
9 4th term 8) (a, + b)

7
, 6th term

100 500
lip

9) (a + h) first term . 10) (a b) , second-term

. 1
11) (2x + 3y)

1
-

0 second term 12) (3x 5
y)

7'
, 4th term

13) (x - y)3 , second term
(

:

-

14) (x - y)30: 30th term

15) Find (205)
3 by calculator.

16) Find (205)
3 by using the binomial expansion with a = 200 A d

h = 5.

17.) Cive the first- three terms of (1.04)6 by usi,ng the binomial

expansion with a = 1 and b = 04.

-

18) Notice how in exercise .(17) as powers of 13 .increase the value

of terms becomes increasingly small. For this reason, when

b is small compared to a we halve

n-1
a + b)-

n
= an + na, + b

2
(other terms) .

SMALL *CONTRIBUTION TO ,TOTAL

I9i



and we have the approximation

(a + b)
n

an + n an-1 b.

3.6 - 6

19) Use the method of exercise (18) to find (20.03).4 to the

nearest ten.

/ 20) Complete the expansion of (20.03) 4 to' determine your error

in exercise (19).

00

1.

-)
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Chapter 3 TEST
1

By iteration techniques, Solve for Y:

y2

Y = (7),

'P 3.7 - 1.

Refer example 3.2.1

1

Program your calculator and list the values in the able..

n x
. n -Yn

1

2

4.

5

10

`15

20

25
1

(

R

2) Refer to Section 3.3; problem #9 -*.the Lost Lady and the

Tiger., Use the follo4ing maze:

C3

7=)
I.....

t7

I

4.1

C
t I.

Represent the probability of escape from corner Ci as pl

etc. List the five recursion equations for.chanCe of

0
escape from each corner. Use -Jour equations (two decimal

places). to find each probability. !

193



T 3.7 - 2

1

3), A skall country has autrmy Corps of 200 generali, 400

colonels and 800 majors. The government feels there are

too iany offictis in the army and theiefore establishes

a new promotional system,whereby 20% of the generals are

tetired'each year and only 570 of the colonels are pro-',
moted. In turn 257, of the colonels are retired each year

and 207, ot-the majors are promoted. Two hundred" majors

'ire commissioned each year but 407, of the majors are also

retired each year. Eventually the total\nwaber of officitri

will' stabilize. Ose the following algorithm and complete

the table.' (Fix your calculator to 0 decimal places.)

Algorithm

1) Remember M, C,

2) N = 0

3)" M = 200

r4) C = .20M + .75C

5) G = .05C + .8G

6) N = N'+ 1

7)' If N = 4.1 STOP

8) GO TO STEP 3

4) Find the equation of the-polynomial

following set of values:

n

0,

2

3

4

5

f(n)

4

4

14

.40

88

164

194

N : C G

0

1

2

3

4

5

10

20

29

30

800

.

-

400 200

functiOfe yen the

,
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1

5) Prove by the- princ4-ple of 'finite induction' that:

tn- T
1 4- 4 +7 + + (3n-2)

n ( Y.

1
6) Expand and simplify (3E

2
7y.)

4

2 8
- 7) Find only the /sixth term of the expansioir: (2x-i )

I

1

1

.c



CHAPTER 4.

4.1 - 1

APPLICATIONS OF THE?FUNDAMENTAL COUNTING

PRINCIPLE

In this chapter/we return to one of the most basic of mathe-/.

matical skilli, counting. Modt of you learned to count before you

even entered school; now you will.have a chance to exAhd.that

skill to some sophisticated applications.

4.1 The PundaTental Counting Principle

Counting solves many many problems in the real world', bUt

when the numbers with which we are dealins become large counting

can take time. That was our original motivation for learning

arithmetic operations. For example, when we have counted 15 applesd

in one patkage and 13 in another, we save ourselves the time of re-
,

counting all'the apples when we find `the total, 28, by addition.

Here we introduce a similar counting short cut. We will do

this by means .of a simple example:
1N,

I

a

EXAMPLE 4.1-1 TAI Map below shows routes between Kansas

*City, St. Louis, and Cincinnati'. How many different

routings are there from Kansas City to Cincinnati via

St.. 'Louis?

Pr

A

eIDOC(ijoArt

Lou IS

1
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4.1 -
_ow

Solution (1): By direcqunt Tie have the following
4

routes,4'
I.

1. A - D 2. A - 3.* A - F 4. A - C

5 . B 6 . B - E! 7 . 1 - F 8. B - G'

9 . C - D 10. C- E 11. - F 12. C= G

`There are a total of 12 routings.

Solution (2): By analysis:

For Route A there are 4.connecting routes

'For Route B there. are 4 connecting routes

For Route C there are 4 convecting routes

Thus there are4.+ 4 + 4 = 12 routings

'Solution (3): By more refined analysis

For each of the 3 routes from,Kansas City to St..Muis I
(A,B,C) there are 4 routes from qt. Louis to Cincin-

.
I

(D,E,F,G)'

(D,E,F,G)

(D,E,F,G)

1

nati

Thus there are 3 4 ='12 routings

We will look at this same problem by means of a very useful

courting device called a tree diagram:
*

G.

*
It might better be called a root diagram because the tree and
branches are almost always drawn upAide down.

197
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660

*---The 'tree diagram is tsgiul in many situations which call for

organization of.infOrmation especially where that infpthation takes

the forM'of finite ordered choices. We -will use this'device again
4

later.

What this exampae and the approaches to it are meant t

justify is,thefollowing:

FUNDAMENTAL COUNTING PRINCIPtE.(FCP)
i

If in n successive choices, the first can be

done inci ways, the second in c2 ways, etc.,

then the total number'of choices in order is

C1 C!.C3. . c

t

t
We have seen FCP used in the case-of the, routing from Kansas 'City

to Cincinnati via St. Louis. In that example there-weraY3 choices

t of riQt1;eS from Kansai City'to,St. Louis, 4 of routes from St. Louis

to Cih4nnati leading' to 3*- 4 = 12 t route cf.ces for the full

N ow let us see how this principle may be used' in problems.

ti
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4.1 - 4

I

EXAMPLE 4.1 -2 Most license plate's in New York State hie

3 digits folloWed by three letters. A typical plate;

is

258 EVR

11111.0

no restrictions are placed on these listings,
*
how \

`mariy plates of-this type are possible?

Solution: A. useful devise for FCP is a series of boxes

into which die number of choices of each type is '

placed.

Here arp Eh6 number 'of chCkices 'is:

PO 10 I 10'1 26- I- 26 I 26
...

A

By-the FCP the total oilqicts

1

is then the product of
*

ithese'choices: ;3,576,000 (SinCe New York State

has about 7,000,000-registered care, ,this number is

sufficient - for ncw.)

*
There are many such listings in practtce. Many letter groups, for
.example, are not allowed because they bruise sensitivities.

1 9,9
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4.1 - 5
-

.

EXAMPLE 4.1.3 How,Man)? different 5 letter words may be

spelled with the lety rs and,F, if no letter

is repeated in any wore (Note: In maltematics a word

need have to aictionar meaningHerel for example.,

1 r ABCDE is a word.)
t

Solution: Using the chdice boxes:

6 S 4 3 TV
Notice that the first letter chosen is, any one of six,

but the second cannot duplicate the first so only five
4

I J
are left. 4 .._,

By Fcit-we have
t

fa'; total of 6-- 5 4 - 3 2 = 720

r

words.
k . 1k X

....4,
$ f
o

EXAMPLE 4.1..4 How many of the words in Example 4.1-3 begin
)

with A and end with B?

44#

Solution: Fill in the restricted boxes first:

A B

.1

Now fill in the'other boxes.

1 4 3 2 1

By FT we,have a total of 1 4 3 2 1 24

such words.

uel

\a,
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411

,EXAMPLE 4.1-5 How mafty three or four'letter words may

Ile found with the letters A,B,C,D,, and F? No re-
/

pegted letters allowed.

Solution: Consider the thre eter words and the
4

four letter worda_separately'..

6 5 4 6 5 1'4 i 3

There are 120 three letter wordi and 360 four -

letter words or a total Of 480 words in all.

11

Notice in the last example that we added 120and 360. -FCP was

not the technique to be used here. You must be very alert to mite

this difference( -Often the word "Zd-7 suggests 1:ihen addition'is in

_ corder.

,
.

,..,

)

.,

exercise Set 4:1 , // 1

,

.

1) List the words that can be formed under the conditions of 1

Example t 1-4 Are there 2(?

2) Under the conditions of Exapple 4.1 -1, how many different round I
;

ttips,,Kansas City to Cinclrnati, are poslible?

3) Under. the'conditions of Example 4.1-1, how many different'round

trips are possible, Kansas City to Cincinnati, if no route is. I

driven twice on a trip?

4) Construction is being done on several of the routes in Example 1

4.1-1. No eastbound traffiC iq p'kowei on routes B and F, and

no westbound traffic is allowed on route D. How many round trips

without repeating a route are possible?

54'1
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Probability

4. 2 -

If you happen to be a sports entkusias.C,'You -most-likely

are familiar with the idea of odds, relating to teams or indiVi-

duals participating in athletic contests.

4.

For instance, you` may read that, a football\team has 7-1 odds

of going to the Super Bowl, or a horde has 5-2 odds of winning a

What does this mean exactly?

. Odds are against the team going to the_Super Bbwl or against

he horse winning the race. Thus if the football season was ruff

through 8 times, the team with 7-1 odds would 'make it oncefand
,

ail.7 times. In the race, the horse at 5-2 would will twice mid..

lose times.

If we talk of probability however, the reference is for-an

event Occurring,.

I.

Priobability ik-ehe ratio of, the event

happening divided by the total numbe of

eventii.

The football

is -1T7- or
. 1

2 . 2
or 7

team's probability of attending the,Sucer Bowl

while the probility of the horse winning is



4.2.-

Basically there are two types of probability:

.

Predicting all occurrence based on past studies or experi-

ences such as forecasting the weather Or life expectancy.

2) Predicting events established by known facts. This involves

expefr rimentssifiu.ch as the roll of a die, draw of a card, flip

of a coin or .spin of a wheel. rn the exercises we wilt see

ways,of shortcutfin:g the .physical work.

4-number of outcomes "for" an event must be less than or

equal to the total possible outcomes. Clearly, it is not pos- 2

sible to have a probability,greatqt than one. Also the least

probability possible is zero.

EXAMPLE 4.2-t From life insurance records, giv n 100,000

20 year olds, 47,70.0 will be, living at the a e of 70. I
A

WhatKis the 'Probability of a 20 year old livjrng to the

"The,total is 1004)0--

age of 70?

The number -"for" is 47,7Soluticq0,

Thy probability is 47,700 r
100,000 ol

.4

EXAMRLE 4.Z-2 If the letters A,H,M,T are arranged in

4

;

any order, what is the probability that this wold

spell -MATH?

'Solution: By The Fundamental Counting Principle there

are 4.3-2.1 or 24 different arrangements only one



c a. 4.2 - 3'

of which spells MATH. The' probability
.

1spelling this word would be 14 of .0417.
I.

EXAMPLE 4:2-3

a) Given the lette sIE, S, T, T how many recog-

nizably different ways can these letters be

arranged?
/

b) What is. the probability of arranging these letters

in such an order as-to spell the word TEST?

SOlutiom: a) By the FCP we have 24 arrangements

however if the two T's are switched thate,is no

recognizable different spelling. Therefore `Se

have 24 s 2 or' 12 different spellings.
.

b) The probability of spelling TEST would

be 1/12 or .0833.

iMPIOLE.4.2-4 When playing Backgammon what is the prob-

ability of rolling "double sixes" with thedice? .

Solution: By the Fundamental Counting Principle there

1

can be 6.6 or36 outcomes when rolling a, pair of.

dice. Of these 36 different results, only one is
'1

a double six'. Therefore the probability of rolling

1
a double six is Tc or .0278.

Alternate Solution:, The probability of rolling a six

1on the first die is vv'The probability of rolling

a six on the second is also 'The probability

204
o
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*,

- .

1,

. if

2

'
/1. 1

a. double six is 3

tie probability ,of .an event -1..s

this has occurred the probabil

event is
'

P' theri thelfobabii
2.. 50

,- .

i.pening s '13 : P.12' .,. 5..

. ,
. I.-..

2.-
. In.-many.probability experiment '

\

random. digit table" y____
....

:"be of value. 'If 50,000 digits were listed at randoM,.howmany of4

400-these digits vould you expec,t to be 9's? How many would you ex-
,

. .
,

.

. peet.to be 2's? eta :Of course you most likely would expect toL

I

JI

4.2 - 4

Intelneral; if

pi and af ter.

ity of a.s:3cond

ity of both .hap

(

,

have 5,000of each digit, but this would be quite rare. Aot4illy

if 6,of the digits were within 67 of:the/5,000,-the table Would
* ,

"random digitgeneiator" follows,
. I

tgcil support.

be god enough to4use.

An algorithm for a

It does rrot have theo

,

dr
Po gert(iae 52,Aigits at a time, FIX 5.

1. 'Remember N
v,

2. N) 2 (in explored in Chapter 6)

3. Remember R

4. Take the fractional part of R and.display

V 5. No---R, Go to Step 2

Select 'a "seed" number N, 11> 0, N # 1 -in-drder to

generate the random digits.

,_ For the eeelinumber N = 1.n th_. following260 digits are
i

-t

P 4 iid
- 4

..14
' gener410. This process could be continued to generate as many

4 4/.

205
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We
4.2 - 5

cligiw as desired. qk,

(--

4

04285 92210 26594 75979 03054-
: Or

00090 .'' 11026 16376, 3924,6 .* 00184
so

92309 42763 72165 10642 01931

60271 91500 , . 00789 44419. 95164 . .

27960 76840 0368? 00131 .4 04952

32861' .08762 83513 N.....80fy83 f' . ' 34999

10216 00946 . 72077
%

'47574 05681

62678 93269 486
,

.38441 )19445
.

Suppose we desire to sample the grade point averages of

100.seniors in a graduating` class of 500: We may assign each

student a three digit number 001, Q02,'... 500. Using the random

-digit table we may take the first three' digits of each 5 dlt

number in Column 3. We would obtain the numbers 265, 163, 721,

007, etc. ttudents 265, 163 and 007 would be checked. The three

digit number 721 would be ignored. This process, using three

digit combinations in t arious columns, would be continued un-

til littil 100, students were s ed. 1
k.

4..

The BiA'thday Problems:

What is the probability that at least two people in your

mathematics classroom will have the same birthday? (Year of birth

neednot match.)

To establish an algorithm, consider the probability that

six will not show up on a single throw of a die,

2 0 G
I

S



4

1'

1

41!

4.2i. -6

*.
Tht

,N,
probability a six will show up is -. Therefore the

1 5
probability that the six will not show is 1- E- = .

The probability of you and your closest friend
i

in the math-

i.
matica class having the same birthday.(non-leap year) Is T61 or

, .

.0027." The probabiTity-that.the two of you do not 'have the same I

b .irthday is 1
1 364

365

Let's add a third person. If you and your friend have two

different birthdates, the probability of the thitd person match- 1

ing one of these two dates is
-ao

r . the probability ofi.the
2

2 , 363
I

third person not matching one of these dates is 1 .65 =

Referring to the alternate solution for ex.ample 4.2-4, the

probabilley of all three people not" having'the same birthdate can

be written:

364 363 9918 -n = 3
1.65 365

1

Therefore the probability for the sarpe birthdate is 1-.9918 r

= .0082e.

364 363 362
0

365 365 T63- =-
164For n = 4 we have 1

I
An algorithm to generate the probability of two people havifig

the same birthdate based on the nib of people Pleseht follows. i

I

N = number of people present,

1) Let A= 1,.N = 2

2) 4---
366-N

...,../ X
fe

3) A4- A X

4) P0---1 - A, 'Diqplay N, Eto

5) N N + 1 (
0

6) Go to Step 2.



S. .
o

A
...)

6
._

Using the algorithm, complete the following table of values:, .

4.2f- 7

n' 2 3 4 5 64101_ 7 1 8 9 1 10

p .0027. .0082 .01 4

I

.

n 20 21 ?2' 23 24 25 30 40 50 60

P

,Exercise Set 4.2

1) Assuming the letters B A.D 9h that order, are allowed on

New York State license plates, what is. the probability of .

receiving a plate. wolith these letters in that particular

order? See Section 4.1
7

2) Given thb letters,A, C,'H, I, N, R, S, S, T, what is the

probability of arraning all of these letters tO spell the

word Christmas ?'

3) Given.the letters A,4A, H, H, K, K, N, UC"- what is the prob-

ability of arranging these letterer tt spell the word

Hanukkah? ,

r

4) One your way to sthool each day there are three signal lights.
. flt

. Each light stays gieen in your favor for-30 seconds and red

for 30 seconds. What is the probability you will not be stopped

by a red light going to 'school?

5) In exercise 4), thange the time for the green light in your

favor,to one minute. What is'the prObability you will not

be stopped?
t

NT!



4.2 - 8

6)' a ) A card is drawn at random from an ordinary bridge
I

. .

deck of 52 cards. Fin&the probability that-this card is
.

...,

an "honor" card, that is an Ace, King', Queen, Jack or Ten. I

1) Find the probability that the card drawrfis)rt an /
"honor" card, that is a 2, 3, 4, ,5, 6, 7, 8v pr 9? I

.

c) From a) and b)above, fist a conclusion regarding -the
- . . . .

prObability of an event occurring,, compared to that same ..,

event not occurring.

Using the randpm di git algorithm and your own, selection for

N, generate a random digit table of 200 digits.
A

8) Count the number of times each digit is listed in your .

random digit table.

9) Combine the totals from exercise 8) for all members of tie

class.. A

10) Using your random digit' table

a) Find an alternative to flipping a coin 100 timer:-

b) _Explain a method to use)for a replacement. to actually

rolling a pair of dice.

11) a) For 10a), hoVi mans of the hypothetical flipv were heads?

br For 10b), how many of the first 36 rolls are doubles?-

12) Useyour random digit table or the algorithm to select three
#

names'at random/Trom a telephone book. 4

13) Using a random digit genera-.or, suggest a method for di-4ft-

ing individualg to the military c'ervicem.

14) How Many people woul4 have to be present in a room in order

that the prObabilityiof two of them having the same birth:

date would be greater than one-half?

2Q



4.3.- I

4.3 .Permutations
A

)(\As a sanior, ,you most likely areas conscientious a student

as y9u weretwo.or three years ago:

Suppose you plan to work on four differen homework issign-
.

ments this evening but cannot deci.)e on which o der to d9'this.

work..

YoiJ may want to start vith'Math, followed by English, then

Social' Studies anti finally Science. Then agin it may be English

first, then the Math, a little Science and finally Social Studies.

(How many)different arrangmenets are possible? k

By the F. C. P. you will, have 4.3.2.1 or 24 different pos-
._rr

When arranging it,ems in 'a line or a definite order as we did

above, we use the word permutation to descPsibe that preelse ar-

rangement.

I 4r

A/-Permutation of a number of objects is

any arrange4ent of the obje6t-it into a

tinguishable)order.

20 peoplg may be arranged in a line 20:19.18:17 ...

Ways. ,

S,t,;ne basball prlayers may,be arranged in 9.8-7-6.5.4-3.2-1

,different.batting'orders.

n Objects can be arranged in n(n-1)(n-2) 3.2-1 ways.



4.3 - 2

Because of the 'long sequence of factors, we use a sp4Okal

symbol for arrangetents such as the above. I

*
he product of all the whole ril.Mbers from 1 to it

#

is called n factowial denoted by n!

n! = 1.2.3... (n72) (n-1) 9?)

DR

n! = n(n-1).(11-2) ...3.2.1

OR

n! =., n(n-1) !

The 20.people may be arranged 20! ways. The 9 baseball

players may be arranged
4
9! ways.

An Algorithm may be writtenl.to generate the growing factorial-,
:1I

function.

1

1

1

1) Let- N F =

2) Display

3) F F N, Display F.

N N + 1

5) Go to 2. ,

211
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ItA special case is .0! which is defined, to equal 1.



4

, 1

UgIng the algorithm, complete the following table:

0

"lb

n n! n
A

ri 1

1 1 8

2 2 9

3, 6

4 11

5 12

6 13

7 14

8 15

EXAMPLE 4.3-1

4.3 - 3

H:1 many different Ways may all the cards'

from a bridge deck be dealt out?

Solution: Since thereare 52 cards in 'a bridge deck,

of k. cards flay all be dealt out in 52! different

ways. .

/-

To compute the value cf n! for large values, of n;

c-an algorithm may be written.

,.l) Remember N

'2) Let_M = 1

3) Tc-MN
)

4) NeiN-1.

5) If'N) 0 Co to Step 8

\46) Display T

7)'-`'ST011

8) TN
9) Go to Step 4

Writing a program trom

N\8.065.1067.

t

the algorithm When N = 52, yields

212
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. 4'.3 -

Now we will develop the rule ioF the number of petmuta-

Lions of n different things taken r at a timedenoW by,P(A,r) 0

n r.

. 4 I

EXAMPLE: How many different three letter word's may be formed

from:the-work POKEI?

Solution: 'We may select arty of the 5 letters for the
4

first element of ouiviord, the second element in

4 ways and the third in 3 ways. This yields 5-4.3.

or 69 different 3 letter words.

This is a permutation of staken three at a time or

P(5,3)P(5,3) = 60.

1,

EXAMPLE: Find P(n,r)

t

/

Solution: The first element may be filled. in n ways.
, I

This may be written n-0, the second,element (n-1) 1

ways, continuing until we haNie written r elements

or factors.

1st fg'ctor--(n 0) or n

2nd " (n-1)

3rd " (n -7)

th
,r factor (n-(r-1)) or (n-r+1)

By the Fundamental Counting Prin'4341:

Pln.r) = n(n-1) (n-2) ... (.

J

213



Permutation Algorithm

1) Remember N, R, = 1

2) M4N-R + 1, Remember M

3) 'If M k N GO TO STEP 6

4) DISPLAY P

5) ST6P\

6.) P = P

7) M = M + 1

8) CO TO STEP 3

,4.3 - 5

Factorial notation may be used for permutations,

Let us multiply the right side of the permutation equation

by 1 in disguise:

n-rP(n;r) l= n(nL1)(n-2) (n-r+11 )!((n-r)!

41-0! = (n-r) (n-r:-1)(n-r-2) 3-2.1

Therefore (n -1)(n -2) ... (n=r+1)(n-r)(n-r-4)...3.2.1
(n-r)1'

Which simplifies to:

Exercise Set 4.3

P(n,r) = Tit e
(n-r)!

a

s

1) , Using the Permu'tatfon Algorithm, write a program that way
.

be used to find-P(n,r).

2) Snow White and
.

the Seven Dwarfs art planning to go tobogganing.
vv.

a) How many waytecan they ride,, an 8-person (or 1-person,

'7 dwarfs), toboggan?1,

214
4



4.3 - 6

How many ways cv they ride if they,have a toboggan

that will hold only 5 of them? ,

c) 'kw many ways canthey ride the 8-person toboggan if

0
Grumpy refused to de?

d) How ma N ways can they rid An 8-person"toboggan if

Bashful refuses to, go'first?

e) If Prince Charming comes along with a 9-person toboggan,

how many ways can they all ride?

3) host to hone ntiberi have three digits'followed by four

digits. uppose no repetition of the first three digits is

allowed".

a) What is the maximum,pumber of telephone numbers?

b) What is-the probability a telephone' number will only

4) Using .the first defin tion of p(n,"r) ,

At

'P(n,ri) = n(n-1) n-2) ... (n-(n-1))

= n(n-1) (n-2) ... (1) = n!

i) Use the second definition of P(n,r) = (n-ir)I to find

have odd digits?

P(n,n).

. b) What does this suggest abotit defining OI?

1 1 1
5) Show that P(n,l) P(n,2) 17-7 . I

'6) a) How-many words -can be formed from the lettprs of the

word HYPERBOLA taken all together?

b) In how\ many of the words in a) will the letters by in

that order, occur together?



4.3-7

.c) How many of the words in a) will the letter h and y

not occur together?

7) Generally we label polygons with Capital letters at th4

verticee. .1wItiat it ttie probability'of labeling a trian

with the letteks A, B, C in clockwise order if all lette

of the alphabet are equally likely to be selected at random?

8) a) Given the digits 1, 2, 2, 3, 3, 4, 4, bow many dif-

ferent seven-digit numbers may be written?

b) How many numbsrs greater than 3,000,000 may be written?

c) What is the probability'of writing a number greater:

than 3,000,000?

d) at is the probability of writing,a number greater than

4,400,000?

nt
(n-r)!

in Lerms of P(n,r)

9) Given P(n,r)

- Find P(ri,E+1)
4

10) There may be times when it is necessary to calculate P(n,r)

-'for r = 0, 1, 2 ... n. Using the result from exercise 9) an
ti

algorithm may be written.

1) Remember N, R
4

2) M N + 4 4
3) If R = 0 then P = 1 because P(n,0) = 1

4) Display P

5) If P.=0 Go to Step 10

6) R.*-- R + 1

7) T4"- R

8) P +- P T

9) Go 'to Step 4

lOy STOP
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4

4.3 : A

Write a program to complete the following table for n 9.

0

0

1

s2

3

4

5

6

7

8

9

P{n:r)

I

1

21

1



4.4 Combinations 1/-2

4.4 - 1

1.et's200,ack to doing Itomework assigments as mention in

Section 4.a.

If student decides to studythree of four academic courses

over the week -end .in how many ways can this student select' the

subjects without regard to order?

If the order was important, we would have P(4,3).= 24: :

Since we are not concerning ourselves W.th.the order of which

subject is'to be studied first, second or third, the number of
"Or

ways is reduced.

If the four academic courses are Math, Science, English and

Social Studies there, can only be four different selections.

Math, English, Social Studies

Math, English, Science

Math, Science, Social Studies

.English, Science.Social Studies

We say there'are 4 combinations

Combination DefinitiOn:

A Combination of amumber of objects, is a

selection of these objects without regard

for order.

We deitote a combination of n objects taken r at a time

11 as C(n,r), thus from abOve

C_.(4,3) = 4

213
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1

4.4 - 2

I

.coing back to the 'study assignment:

Let M = Math, E = English, H = Social Studies, S = SCiince

a

4

Combinatidns Permutations

M,E,H MEH, MHE, EMY, EHM, HEM, HME

M,E,S MES, MSE, EMS, ESM, SEM, SME

M,S,H MSH, MRS, SMH, SHM, HSM, HMS

E,S,H ESH, EHS, SEH,' HSE, HES".

It is evident that there are 24 Permutations of the 43ubjects

taken 1 at a time. The/ s.4624 Permutations may be obtained by re-

arranging each Combination in 31 ways.

'Thus: 6(4,3)31 = P(4,3)

C(4,3)(3.2.1) = (4.3.2)

4-.2.
C(4,3)

,32.1
= 4

3

In general, eachliAmbilletion of r objects can be arranged in

rl ways. Therefore, each C(n7,r) yields C(n,r)-r1 permutations.

Therefore,-C(n,r).rt'= P(n,r)

.(743n,r).- Pltr) 7Fr--

ti

nt . I

'C(n,r) = r1(n-0-1 I

-

...

1
et

%4J -EXAMPLE 4.47,1 In how.many ways can a bridge hand of 13 II

../

."--cards be seleCted from a standard-deck of 52 cards?
,

II
Solution: Since tloporder of receiving the cards does

.

)
not 'hatter.,- we have 0 combination prob e m. .

II

t.._

521 52.51 ...40.39)c _ 635, 013, 559, 600C(52,13) = 131. 39 - 131 . 391
II.

2 1 9 `---
..



4.4-3
0.1

EXAMPLE 4.4-2 Suppose 21 astronauts ar% available for

°. the lunar landing program an4 12 have had orbital

xperience.

a) w many crews of three can be made up?

,b), That is the probab ity that the crew of three, will

bc, made up of at least one experienced and one in-

experienced person?

Solution: a) C(21,3) 31.18211 = 1330

4

b) There are o cases to be considered:

1. Having two experienced and one

inexperienced OR

2. One experienced and two inexperienced.

astrbnauts to make up the crew of three.

FOr (1) we have C(12,2) or 66 ways of choosing two

astronauts from the 12 with experience, and for

each .choice, there are C(9,1) or 9 ways of choosing

one astronaut froM the 9 withbut experience. There-

fore we have C(12,)-C(9,1) = 66.9 = 594 crews for

(1).

Similarly for (2) there are C(12,1)-C(9,2).= 12.36

= 432 possible crews.

The probability of having at least one experienced

And one experienced astronaut on the crew is:

594 + 432,
71330 714
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4.4 - 4

141

To use your calculator to find combinations, an algorithm

I
may be developed.
#-

Combination Algorithm: C(n,r) r # 0

'1) Remember N,R .

2) B4-- R, N

3)

4) If R = 0 Go to Step 9

5) Bft--BR

6) N*--N-1

7) TikTN
8) Go to Step 3

9) C =
T

/ 1 STOP

(A,

Exercise Set 4.4: ,

1

1) Write a program using the Combination AlgoritKand check.

.the result for EXAMPLE 4.4-1.

(2 7) Use the program to evaluate each of the following:

2) C(100,3) 3) C(100,97) 4) C(52,5)

i

5) C(52,47) 6) C(15,1.0)
4

v 7) 05,55

(8-13) Find the value of r that makes each of thefollowing true.

= C(r,2) I

= C(1,x);

8) C(10,3) = 6(10,r) 9) C(8,7)= C(8,r) 10) C(6,4)

11) C(12,7) = C(r,5) 12) C(r,6) = C(r,2) .13) C(n,r)

r in terms of n

and x.

(14-16) A Mathematics, Class contains 14 boys and 9 girls:

14) In how mhny ways may a comaidttre of three students be selected

from this class?

15) How many of these committees contain only boys?

2j



4.4 - 5

16) How many ,of hese ommittees contain only girls?

17) Arrange the following n increasing order: 101, C(7,3),

P(7,3): 7J + 31,, Iv,I
(18-21) What.is the prdbability when receiving 5 cards dealt from

d.
a deck of 52 cards that the five cards,//

,18) Will coOkain four cards of the same kind?

19) Will contain three cards of one kind and two of another?
(9

,("full house")

20) Will contain five cards from the same suit? ("flush"),..', Note:

exclude,straightflushes, (5 card sequences).

21) Rank the hands of "4 of,a kind", "flush" and "full house".

Give a'reason for your ranking.,

Al

qmo 222
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4.5 Binomial Expansion Aga-n

a

I

4.5 1 -

In-Seftiori '3.6 the binomial theorem was de eloped and
-

the numerical coefficients for (a+b)n were obtained from

Pascal's 'Triangle.

-N
:67

n

0 1

1 1, 1

2 1 2 1

.3 1 3 3 1

4 1 4 6 4 1

5' 1 5 :0 10 5 1

6 1 6 15 20 15. 6 .1

a

1

Let us relate. these numbe s to combinations. For the row

where n = 5, we will find the .alues of C(5,r) wherer =.0,1,2,3,4,511

.C(5,0).= cum 0151 1 1

I

11

51'C(5,1) = C(5,4) z--1E--..

1141 '
11

51
Z(5,2) 4c C(5,3) = 213!

10

These values eorremond to the'six values for the row where
II

-.N
.

n= 5. ..-,.... -
. .

.
We may,therefore replace this row with:

C(5,0) C(5,1) C(5,2) C(5,3) C(5,4) C0,5)' . II

223
V
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4.5 - 2

Recall- that to complete thA next row in Pascal's Triangle,
.

we ~added pAggpus values:

n =- 5 1 a lo 10 5 1 ,

- 6 1 6 15 20 15 6 1

The values inthe row f6n = 6 also can be(mritten in

tion notation:

C(5, C(5:4,,,,/e(5,2) C(5,3) - C(5,4) C(5:5

C(6,0) (6;2) C(6,3) C(6,4) C(6,5). t(6,5)

C(5,0) + d(5,1) = c(6,i)

thus C(5,1) + C(5,2) =. C(6,2) 1

C(5,24+ C(5,3) = C(6,3)

etc.

In &nerai we may state: C(n,r,:1) + C(n,r) C(n41,r)

The proof will be lift for an eXercisi.

We may r'iw rewrite the !binomial expansimi in CoMbination

Notation

(a+b)n C(n,0) + C(n,l)an-ibi -1-.C(n,2)an-2b2 +
. ,

C(n,rpAn-r-br .!. + C(n,n-1)a
1
b
n-1

+ C(n;n)an-nbR

,)

Take special note of the exp9nents of Evand b.
(

The exponent for

b4s the same as r; exponent fora is n-c.

2'24
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Therefore to obtain a particular term in an expansifon,4say

the jh term, the coefficient is obtained by finding C(n,r-I).

EXAMPLE: Find the 30
th term only of (a+b)

52

Solution: The coefficient Of the 50th term will pf

they same as the coefficient, of the 2nd term as

/P

Either way the 50th'tervis.C(52,50)a2b50 OR 146a2b5°
.

I

If en entire expansion of a binomial is necessary, an al-

gorithm may be written to cklcuiate a row 'of Pascal's Triangle.

We will use the pi:Operty:

C(n,r +l) C(mr).

n1 n(n21)..:(11-r+1)(n-r)(n-r-1)1
C(n,r+l)- (r+1)1(n-r-1)P % (r +1)r (n-r-1)1

[n(n-1) . ..'(n-r+1) 1 (n-r)
r1

\
r+1

-).

but C(n,r)
n(n-1)...(n-r+1)/(n-r)1 n(n-1)....(m-r+1)

I
rl (n-r)1 rl

.

Sullstitutifg we have: C(n,r+1) = C(n,r) iTI ,

I

, f

n-r

e/ :
0

Pascal'sTriangle Algorithm N-< 36 ' ?4

1) Remember N

2) M'<--N+1
,

3) Let R - 0 then C --1.

4> -Display C I

5) If C = 0 Go to Step 11

I
1.1

I



fi

6) Re R +.1

7) C 2C
R

8) T (-- 117R
(

9) Ce-- C.T

10) Go to Step 4

11)*0 STOP

rs'

.4.5 _...4,

,,,. .
.4.

:MO

4+

2

Exercise Set 4.

1)' Using the algorithm, write a program to find a row of Pascal's

. Triangle* Check your results by verifying the row when n=6.

(2-7) Use your program to help expand the following:

2) (1 +1)8. 3) (1 + kx.2 )
8

4) (x
2
- x

3 9
) 5) . (a - ax) 9

6) (3c + 6) 7 .*7)- (2 + 4m) 7

8) Prove C(n,' r-1) + C(n,r) = C(n + 1, r)

ye*

i

2 9 3
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4.qi Summation Notation

There is an abbreviated way, called Si notation, to write

finite sums of a recursive nature such as those sums produced by

the binomial -theorem.

Of course, the Greek lettleir-Slisma:E: will be used.

In Chapter 2 we wrote the sertes sum as $n = al + a2 + a34+...aril

n

We may abbreviate this with 2: au where ak repiesents some
k=1

function and k is 'the domain.

A

,

It is read as the sum of all ak ask gOes from 1 to n.

EXAMPLE:4,6-1

Solution:

4
1

Evaluate E

k=1

Here a .=
k

4
1 1 1 1 1 25

E k=r+7+3+4. rz
k=1

EXAMPLE 4.6-2
7

Evaluate Z k(k-2)

k=4

Solution: Heri-ak = k(k-2) and k begins with 4

7

Therefore k(k-2) = 4(2)+5(3)46(4)+7(5)=8+15+24+3

k-4

EXAMPLE 4.6-3 Write the following in Sigma notation:

7
1 1 1

1 +. + + +

227 1/4.



1 1 1Solution: 1 = c7I)
° 2, = (7I),

1
z, = (7)", etc.

0 1 2 3 4L 1 1 1
....

1 1(7) + (7) + (7) + (7) + (7) =
..,

4 5 k-11 1: (0
k

EOR co
k=0 '''

. k-1 "

The binomial expansion may be written with sigma notation:

(a+b)n=C(n,0).an0+ C(n,1),an-lb1+..:C(n,k) -an-kbk+...C(n,u)an-nbn

Therefore: (a+b)n = C(n,k) .an-k.bk

k=0

Exercise Set 4.6

(1 - 8) Find the-numerical valuesof each of finite sums:
5 4 52k2) E 3) 2: kk.

1
1) 2: k(k+1)k=1 k-0 k=1

.411P

10
4) E 2

k

k=0

100
5)

k=1

f'

6 12
3k

2
-5k+1 8) 2: 2k-2k=2 k=2

I

. ,

.
;(9 - 16) Ileplace the question mark itileach of the followii

.4
..with the symbol =, 4 , or > .!

0

100 2
, 100

.A

1009) 2: k' ? 10) 2: (k+2) :? (I: k) + 2k=0 k=0 k=0
:,....

11) 1: (k+1) ? 2: k 12) 5: k2 ? (if k)

99 2 100 2 100

k-0 k=1 k=0 k=0

10 1

6) Z.
k=1
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4.6 - 3

(13 - \6) Express each of the following finite sums in

notation:

1 I 1 1 1

+13)
2- T+ $ 7 17

e

3 9 27 + 81+ +14) 5 /25 175 s23"

15) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15,

16) . .

i

.I.

. 2 2 :) s

.0

1

I

I

I

I

1

I

I

I

1

I
I

II

1

I

I

I



Test 4.7 /1

4.7 'Chapter 4 Test

1) In preparing a multiple choice test; a teacher

writes 15 questions with four different choic's

for each question. How many different ways could

a student answer the test? (assuming all questions
7' ):

are answered) 1) Ap

21 In a certain high school, there are 17 English)

teachers, 20'Social teachers, 16-Science teachers,

14 Mathematics teachers and 10 Physical Education

teachers. If a student takes all five subjects,

what is tie probability the student will receive

the teache?lof his or her choice in each subject?

Fix 9.

3) How many different elevenletter words can be

formed from the letters that make up the Word

"Mathematics"?

4) Solve 12!
61_31

5) A poker hand consists of 5 cards dealt from a

deck. of 52 cardsl., How many different poker_

hands are

6) x # y butrg(n,x) = C(n,y) Find a value for

x in terms of n and y that makes the statement

true.

7) x .-14(n,r):....,n,r) Find the value of x in

terms of-r.

8) Simplify completeIr: . 1

l) P(n,2)

9) Find the 11 th -term only inthe expansion of

ft

(5y + p) 12

10) If P(n,4) = 2 P(n,2) find-n.

u

2)

3)

4)

5)

6)

. 7)

8)

10)/

4
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,

11) Solve for n: = 60
CP(n(n-14)%3)

12) Evaluate:

k=0

- Test 4.7, - 2

t

13). .,Write the binomial expansion (a+b)n in sigma

notation.

14) What is the probability that if'three persons

are in a room, none of the three have the same

birth-month?

11)s, 1

12)

:, 13)

)

'`.......

*

1,

i
23i

A

.

9

14).

I

I

I

I

I

I

1

I

I

1

I

I

1

I

I



CHAPTER

I a

POLYNOMIAL FUNCTIONS

5.1 - "1

a0

: .

Earlier in your study of mathematics you were concerned with quad-,
2ratic functions, functions of the form ax- + bx + c, and linear functions

of the form mx +b. In this chapter you will meet. more general and higher
atiI

posvi functions. Your calculating tools, will-help you to deal with them.

5: 1 "s Czapl-iing Polynomial Functions
.

Given a whole number n ind a Variable x, theni P(x)

of the type

P(x) = an x + . . a3 x
3

+ ai x
2 taix + a0

where a a , a a
n, ' a2, 1' 0

are constants and a 0 will be referredn

to as a polynomial function of degree n*. If th,e terms are arranged in de-

scending order of exponents, the function is said to be expressed in

You may, if you wish, use y in place of P(x) in repre -

sentinga polynomial function.

All polynomial functions when plotted will be smooth curves without

breaks. These functions may be drawn without lifting the pencil, thatis,

they are continuous. The domain.of a polynomial function is the get ce real

numbers..

'If n = 0, *zero degree or a
n = I,' first degree or a

.n =2, second degree or
n third degree or a

constant' function
linear function
a quadtatic function
cubiclunction

232* .
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41.

4

A

5. I - Z

As mentioned eerier, in previous 'courses' you became-quite

familiar With liiear and huaaratic functions, therefore in this section

vje'twilrfocuS our attention on functions of degree *greater than two.

A programmable calculator is a great aid in grapking these poly-
*

nomial functions. Simply write a program cansi911111pCg of the propir

strokes needed to evaluate the function, followed by R/S or IPAUSE

'and a key that returns the program to the beginning. By repeatedly enter.;

ing value! of x, each time running the program to obtain the P(x) or y

value, .points mly-be obtained for plotting the function.
.

Iflou,are working with.a computer or widepaper printing program-

can,"aullinate" the entire'process byttaving the , 0mable calcula.tor, you
, * ......

machine,actually draw the graph, in a somewhat cru m, using a syfnbot
,

suchas, u*" to represent each point. It is easiest to do.this sideways so

at the x-axis is vertical. .
1

Let's first consider a less demanding task that even non-printing

ogramtn if()abliealculators can perform; c sing regularly spaced x-values

within an interval say from x = s 4 tO =4t. [s, t]
, .

sequence of values with,,,p constant,difference of. d, s, s+d, + 2d, ..

This is an arithImetit

We can stop the process as soon as the value exceeds t.
.

,/ The algorithm for this procedure is

,1) Remember s, t, d

/
2) x 8, splay x

233
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5.1 - 3

* 3)'

4) x +.x+d"

Calculate P(x) and display P(x)

S

5) If x + d > t stop

. 6) Go to step 3

EXAMPLE 5:1.1 Sketch the cubic

3
P(x) 5; x3 + T X

2 6x -

for the interval [-4:3] for d = .5

When programming a calculator,' it saves calculating steps to rewrite

the polyriotrial by factoring. x from part of the express* as-many times

as possible. A binomial will finally be nested in a series of products. 'Tae

polynomial is then said to be in 'nested form

Now

P(x) = x3 + 2 x - 6 - 2i3 3

3.P(x) = (x2
2

+ x - 6)x - 2
3

P(x) = [(x + 2 )x - 6] x -

it is not necess'ary for us to square and cube

culate "from the' inkide opt".
-

HP 33E.

RCL 1
2 GSB '12

03 RCL 3

4 STO' RCL* 2
6 R.0 L

t x > y

s, R2t-- t, R34--

08 GTO 10
09 GTO 01
10 CLX
11 R/S
12 f pause or

R/S (x)
13 1.- subroutine

begins.

14
15 5
16 -F.

RCL I
18, x
19 6
20

x. We can instead cal-

-9

21 RCL> 1
22
23* 2
24
.25 f pause or R/S Po ,
26 g RTN

S p 3 may be handled as a subroutine contained at the end of the program.
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5. 1 - 4

TI 58 RI
.

R2 t d

C
RST
2nd Lbl
C
CLR.

30 RCL
31 01
32 -
33 6

34

00
01
02
03
04

, e----

RCL 15

01 1'6

SBR 17
A f8

-RCL 19

!," ' 05 03 20 R/S 35 X

.. 06 Sum 21 2nd Lbl 36 1-CL

07 01 22 A 37 101

08 RCL 23 2nd Pails e 38 -
09 01 24 + sub- 39 2

10 x >4. t 25 1 routine 40 =

1 I RGL 26 begins 41 2nd'Pause
12 02 ' 27 5 42 _INV sub
13 INV 2nd 28 =

------N

14 x> t 29 X \-,./-

'RS 80 10 INPUT S, T, D
20 X =S
30 PRINT. " X", "PfX)"
40 Y = X*(XNX + 3/2)-6) -2
50 PRINT X, Y
60 )0= X + D
70 IF X - T GO TO 90
80 GO TO 40
90 END

=NI r
23,5
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Graphing polynomial funetsionsowith a computer
II I

, 4

Wh en "drawing" a graph on a cathod-ray-tibe (CRT) or on a.

computer print-ou t paper webegia,by ,obtaining inforMation on th e number

,-
oflines available and the number of characters per line. 'We wish to

c
.

.
..

locate, qur first value of x (s) on the ,first line and mod'e' to the right a 00.
A,

Inumber of character spaces corresponding the P(x)-or y value,il.correspon to

marking this point with a "4°1.. This process is continued :op a Separate
4 .*

lirie for each x until our final point (t, P(t)) is printed on the lakt line
N

.Let us assume there are N.% spaces between' the eh and bottom lines,'

t n the: distance d between any two lines would be t_ s
N

The sequence

of x values would read
C t-s 2(t.-S)6' 'N(t-s)

S.+ s+ s

t'

N. There will be N + 1 values or lines.

The y-spacing reqtires More Thought. We desire to utilize the full

width pf our display, thereforwe ..Ped to know the largest and smallest

values for P(x). The difference between these two values to our example

5:1,-1 is 20.5 - (-18) or 38.5. If our computer can display 60 charac-
L_.

characters per unit on each line.ters on p. line we will allot
1

)(60)(
38.5

ti

%0
C

3- 8.5-
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5.1 - 7

The y location for the lowest value (L) of the graph will correspond,'
to (-,18) ) or (L) (C) characters. This point, '"*" should print on;, 38.65

0
.,

. 60
the left margin. The greates`t value eorresportil.to (20 5) / )38.5,

. Ws and this pint lihould be printed,at-the right -hand margin:

I Note that' 20. 5t (
66 60

(718( iri) "--611

4

To locate a point exactly in the middle 2f,a line, "dist is for a y valu
(20.5) + (-18) 60 , 60of = 1.25, we would move (1.25)( 38.5) - (-18,( 38.

60
(19, ?)

, = 30 characters to the right.,. _

In- neral to locate the propej 2nd coordinate, move to the right

C - L C characters.

Point - Plotting Algorithm

s and t represent the x-interval

or

H and L represent the P(x)-interval (high and low respectively)g

N + I is the numbed of lines available

W is the number of chi.racters per line

1) Remember- s, t, N, H, L,3 W

tN -s 4 W2) d 4--. x - s, C q--H z
'

4,-
-:-_,

3) Calculate Y by a subroutine
4

fi
ert

4) Z4CY-CL
5) Print "*" at Z units to the right (for TRS 80, Tab (Z) "*")t
6)**14,If = 0 STOP

7) N o-- N - 1, xo x + d GO TO STEP 3
. .

233 --
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5.1 - 8

3The graph of P(x) = x3
+ x2 - 6x - 2 is sketched below using a

TRS 80 cOmputer., Axis. added after the run.,

i

. )

10 READ S, T, NCH, L, W
20 D=CT-5)/N
30 X=S
40 C=L4/04L)
50 Y=X*(X*(X+3/2)-6)-2
60 Z=C*YC*L
70 LPRINT TAB<Z>"*"
80 IF N=0 GOTO 120
90' N=N-1
100 X=X+D
i10 GOTO 50
120 DATA 4, 3, 14, 20. 5, 18, 60

...

r

P.

..

t..

(f)

23.E
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Exercise Set 5. 1

,.

-5.1 -9

Ir'
- 7 Write a program that can be used to find the function values

for each x in the interval [s, t] as' listed. Use the indicated value for

d, Attach the progrim as a subroutine and tabulate the points. Finally

graph the function to the nearest tenth%

1) A(x ) = 3 2 - + 11 [-i, 5], d = .5
,

2) B(x' r 2X1' 9x24 12 - 5 [-1, 4], d = .5

.3) C(x) -x 3 + 3x2 - 1 [-I .' 5, 3.5], d = .25

4) D(x) = -a3 - 3x2' + 1 [-1. 5, 3.5], d = .25

5) E(x) = 4x4 + 2x3 - 19x2 - 11x + 6

[-2. 25, 2.25], d = .25

6) Fl(x) = 2x4 + 3x3 -7x2 - 12x - 4

[-2. 25, 2.25], d = .25

7) G(x) = x5 + 2x4 -5x3 - 10x2 + 4x + 8

[-2. 2, 2.2], d = . 1

24u
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5. 2 - 1

_ .

5. 2 Approximating =um - Minimum Values and Zeros of

omial Functions

7
it

Wien sketching a polynomial function-we should have dome idea of 1
,--

what interval to work with and what the graph will look like outside that
I

I

I

interval.
.. -...w.

By factoring out the highest power when a function-is in standard

form, we have, using the example from Section 5.1, 1:

3 6
i) (x ) = x3 + 3 x2 6x - 2 --s P(x) = x3 (1 + rx - 2 .4-3 ) . I2 x x

. .

As x becomes very large (increases without bound or approaches
1

infinity) the value in parenthesis approaches I. This is because each

fraction becomes very small a its denominator increases. For that reason 1
.

.-,.. ,

P(x) approaches thvalue of x'which, in this case, becomes very large. I
We use the following notation''

3 6 2 I
as x --r. ao , (1 + 2x

- '
x
f - ,--j ) ---", 1 and P(x) --$. x3.

In the same manner, as x 0. co ,
,

. I

( 1 + )7
) --). 1 urd P(x) --0. x3, which is very small. 1

3 6 25 . ______

2x
(

2 + ax + a0More generally, given P(x) = an xn + ... a3 x3 -f.a2x

by factoring but the leading term
I

I
ao not confuse the notation x.:,ao aá x approaches infinity, with
A R1l 4--. s, which means R, is replaced by s.

Ic .
.,

r 241 (--
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P(x)
a

3a x ( 1 4.

ane3
a

2

87-7-21-xn

5. 2 2

al a
0

a xn- a xnn n

Thirefore as lxi 4. coo , P(x) a
n
x

. We can see that the leading term bg-comes the lominating value as

x becomes very large or very small.

3The graph of the cubic function P(x) x3

2
+ x2 - 6x - 2 (as in

fact every cubic function) extends indefinitely both upward and downward

(the range is thus the set of real numbers). A cubic function, unlike a

second degree function (parabolic graph) does not have an absolute maximum

or Minimum point. But the graph on page 5.1-5 suggests that the point

(-2, 8) from P(x) seems to be hher thin other nearby points of

the graph. If this is indeed true: the point is called a relative maximum

point and the function P is said to have a relative maximum P(-2) = 8,

when x = -2. Similarly, P seems to ha've a re_ tative minimum P(1) = -5.5

when X = 1*.

At this time :wecannot be sure of =theste relative maximum and minimum
points; we can, however, test values on either Aide of x' _ to -2 or
1, comparing these P(x) values with P(-2) and P(}).

24 2 5



4

Frequently lines are drawn,

intersecting a point on a graph. If

the point is located on a function, only

one of these lines wil)be tangent to

the function at that particular point.

ri A point will represent a relative maximum or minimum if the

ihr

,/ 5.2 - 3

. II

tangent to the function at that point is parallel to the X-axis.

...

A zero of the function P(x) is a value r such

that P(r) = O. --
4

.

Graphically a real. zero of any function is simply the value of x
w..

where the-graph crosses the X-axis. If the zeros are not real, the func-

tion will not intersect the X-axis. EXAMPLE 5. I. 1 shows three real

values, -x = 2 is obvious, the other two zeros may be estimated_to the

nearest tenth -3.3 and -.3. In, Section 5.4 we will use our calculator to

find these zeros to greater accuracy.

All polynomial functions may tn.?. written in factored form such as

P(x) = an (x - r1)(x - r2) (x =7 r3).... (x - rn) where rl' r2,, r3 ... r
n

are members of the complex number system.
-...

P(r1) t.-- 0, P(r,E) = 0, .. P(rn) = 0.

"89
r , r & are the zeros of the function.

1 2' Itn

.

I

1

I

1

I

I

1

I

I

1

I

243 .1
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5.2 - 4

th
An n degree polynomial will haven factors and

comes nding zeros and the equation, will have n
e '

roots. Each value of r that is a real number will

represent an X-intercept when P(x) graphed.

If an even number of the real values of r are the same, the graph

of the function will be tangent to the X-axis at that particular value of r.

We will not take up the process, of factoring polynomials at this time.

EXAMPLE 5. 2. 1 -Find the zeros of

P(x) = x3 - 5x2
+ 2x + 8

Solution: P(x) = 2 - x 2)(X 4)

P(x) = (x + 1)(x - 2)(x - 4)

1, 2, and 4 are the X-intercepts

or ze s of the function. Relative

ma mum between - L and .1. Relative

minimum between 2 and 3.
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5. - 5'
.

EXAMPLE 5.2.2 Find the zeros of

Q(x) = 2x3 + 7x 2 + 8x + 3

Solution: Q(x) (2x + 3)(x + 1)(x +

Qcx) = 2(x 3 )(x + 1)A
2

- 3/2 and -1 are the zeros. -1 is said

to be a zero of the function of multipli-
f

city two. Relative. maximum between

- 3/2 and -1.

EXAMPLE 5. 2. 3 Find the zeros of

R(x) = x3 - 3x2 + 3x,- 1 = (x -.:1)
3

Solution: .R(x) = (x - 1)
3

0) 1 is a zero of multiplicity three.

( -

EXAMPLE S. 2.4 Find the zeros of

K(x) = x4 - 6x3 +5x2 24x - 36

Solution: K(x) = (x2 - 4)(x2 + 6x + 9)

K (x) = (x 2)(x + 2)(x + 3)2.0

Three X - intercepts 2', -2, -3.

Relative maximum between -2 and -

2 4 5



5,2 - 6

'EXAMPLE 5.2. 5 Find the zeros of
7

T(x) = x + 5x2 - 36

T(x) = (x2 - 4)(x2 9)

T(x) = (x + 2)(x - 2)( x + 3i)(x - 3i)

Two X- intercepts -2, 2. Note that ,

this is NOT a parabola, T(x) is much

"flatter"., Note too that the complex

zeros do not appeal- on this real graph.

The zeros of this function are 2, -2, 3i, .and 3i.

EXAMPLE 5.2. 6 Find the zeros of

V(x) = 2x 3
+ 5x2 + 8x + 20

Solution: (x) = (2x + 5)(x2 + 4)
5

V(x) = 2(x + 2 )(x + 2i)(x - 2i)

-5/2 and 2i and -2i are 'zeros and
e,

x'

there is only one X-intercept.

In EXAMPLES 5:2. 5 and 5.2.6 two of the values of r are complex

conjugatep. Remember the coefficients of a polynomial function

an ... a a2, a1, a0 are real numbers. Clearly complex values of r

must occur in even multiples, in fact they will be conjugates (a + bi, a - bi).
t.4c,

246
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I

'EXAMPLE 5. 2. 7 Find the zeros of

P(x) = x4 4x3 + 6x2 - 4x + 5

Solution:

5.

I

(x2 + 1)(x 2 - 4x + 5)

(x i)(x + 01(x - (2 + i1 - (2'- 0)-
#

No real no X-intircepts.

41.

EXAMPI,I 5. 2. 8

1A,/' = -x3 + 3x
2- 4

f

Find the zeros of

Solution: W(x) = -,(x3 -.3x2 + 4)

W(x), = -(x +. 1)(x2 - 4x + 4)
9

W(x) + 1)(x 2) (x - 2)

P",

ti

as x """14` OP W(X) '-"3 " 00

as x oewy (X) coo

the `inte reepts . Relative

daximum at 2. Relative minimum at 0.
.,

247' s
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52 - 8

Exercise Set 5.2

1) or Q(x) in EXAMPLE 5. 2.. 2
niet

a) Estimate the relative mitfignum point

4

r

b), Estimate the relative maximum value for x

F. W(x)iii EXAMPLE 5.2. 8

a) Estimate the relative mitimum point

b) Estimate the-relative maximum point

3) Tor *A(x) inExercise Set 5. 1 - 1

a) Estimate the relative maximum and relative minimum point.'

b) Estimate the three zeros to the nearest tenth
41

For B(x) in Exercise.Set,5. 1 - 2

a) Estimate the relative maximum and relative minimumpoints

b) Estimate ite-three zeros.

'5-1 For Cix) and D( in the Exercise Set of 5. 1 - 3 and 5. 1 - 4

a) Estimat relative maximum and minimum poiSts for C(x)

b) Eatimatethe relative maximum and minimum points for D(x)

C(x) e-D(x). Therefore for every x the twA functions are ad-
%

C)

ditive inverses. Write a general statement regarding the com-

riariscrn 61 relative. maximum atid minimum -mints for functions

such as

6) For E(x) In

and-6(x), that are opposites.

nearest etenth..

rcise Set 5. 1 - 5 estimate the four zeros to the

24 ;)
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4

5.2 - 9

7) For) F(x) and G(x) in Exercise Sets 5. 1 - 6 and 5. 1 - '7 write both

functions in factored form.

(8 - 15) Provide a rough sketch for each of the following functions:

8) yi = 2x3 + 18x

9) '''Relative maximum point (0, 2)
Relative minimum point (-4, -4) .

Point of tangency (2, 0)
x- intercepts at -6 and -1

10) 5th degree polynomial a5 =

one zero at -1
zero of multiplicity 4 at (2, 0)

ti

11) Turning points (-3, 4), (0, -2) ,a4 .< 0, note turning points

4refer to retatil'ie maximum and relative minimum points. Zeros at 1
-2 and` -4. A zero of multiplicity 2 at 1.

12) y2 x (x + 1)(x - 4)2

13) y3 - (x - i)(x + i)(x + 1)

14) y
4

= -
1

(x + )

15) y5 = x (2x - 3)2 (x + 1)2

24.')
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5.3 - 1

5.3 Slopes of Lines Tangent.To'a Function

In Elementavy Algebra you acquired the skill ofdividing a

"polynomial P(x) by a binomial of the fordmic - c. Obtaining a

quotient Q(x) and a remainder-R.

EXAMPLE 5.3A. Given P(X) = x3-- 3x2 + 5x + 4,

divide P(x) by 2

Sblutj.on:

I

2
x - 2x + 1*

x:2 r k x3 -3x 2
--I-4- 5x + 4

k
N

x + 4

x - 2

6 R

4



I

This factoring or division process

was shortened in Intermediate Algebra

when synthetic division was used

If P(x)* is written in nested form

and the expression is eva uftted one step

(at a time the procedure will be identical

/'
to synthitiC division. te

P(x) = [ - 3):K+ 5 x + 4

for x = ((k Ei : 3) ic +- 51x + 4

.

- 2 -

c a
3 a 2 al

1/2 -3 +4

211

P(2) =R=

[6,- 3) x 5] x + 4

x + 5 x + 4

[(-2) + 53x + 4

EA + 5j x + 4

+ 4
dB.

(1) 131 + 4

+ 4-

The method is simply multiplying the leading coefficient

by c, adding this product to theunext cnofficientand continuing

the piiocess.

251



5.3 - 3

We will npw inyestigate what information division by a

binomial will give us.

Px R'

Q(x) X-Cx-(c

)
( X.# c

(i)- P(x) = Q(x) (x-c -+ R.

If x = c, P(c) = (i(5) (0) + R or P(c) = R

Repeating this division by x-c ,on

quotient f(x) and a second remainder 'S.

4/311 L
riX)= kXC X-C

(ii) Q(x) f(x) (x -o)

Q(x) results in a second

Substituting for Q(x) in (i) yields,

P(x) if(x) (x-c) + S) (x-c) + R

P(x) = f(x) (x-c)26+ (x-c)S + R

but R = P(c) as x approaches c.

P(x) = f(x)

.or (iii)
P(30 P(c)

x-c.

(
)2 + (x-c)S * P(c)

= f(x) (x-a + S *

now as the' right side of the equation approaches S.

s

P(x) - P(c) represents the slope of a line joining the,points
x-c

(c, P(c)) and (x, P(x)). A

252
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5.3-4

Giveyrafunction P(x), select a point (c, P(c)). Notice what

takes place as x--,c

x-,

The line joining the two points approaches a tangent to the
, -

tion at (c, P(c)).

The slope of this tangent line is

Y1 Y2 P(x) - P(c)
m =

xi - xi - c

1

I

'1

from (iii) as x c m S and S is the "second" remainder

when P(x) is divided by x - c.

From EXAMPLE 5.3.1 Q(x) = %x2 - 2x + 1. Dividing by x-2

once again we obtain

k -2 +1

1 -2

1/2 -1 -1 = S

Therefore for the function P(x) =
3

3x
2 + 5x + 4 when x = 2,

the line tangent to P(x) at x = 2 has a slope of -1. P('2) = 6,

therefore the equation of this tangent line is y-6 = -1.(x - 2) or

x + y = 8.

253
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-5.3 - -5

EXAMPLE 5.3.2 Find the equation of the line tangent to

P(x) at x = 4.

Solution: P(x) = kx3 - 3x
2 + 5x + 4 by double

synthetic division.

'1/2 -3 5 4
2 -4

y -
Y1 S(x x1)

y -'8- = 5(x - 4)

y m 5x 12

-1's 1

2 4

1 15 =S

P(4)

(xl, Y1)c (4, 8)

254



5.3 - 6

We may now confirm our thoughts regarding the relative m4i,
3

mum and minimum oints'for the polynomial P(x) x3 7+ x2 -6x -2

graphed in Section 5.1.

(-2, 8) seemid to be.a relative maximum. vBy "double

division" we obtain

1
3

-6 -2 A

-2 1 10

1
71/2

-5 I 8 = R

:A 1
1.1/2 -5

5 I 0 S=1 7

-2 5

S = O. Therefore the slope of the line drawn tangent to P(x)

is O. Only a horizontal line haste. zero slope, therefore (-2,8)lis
1

a turning point, in this case a relative maximum.

Our calculator or computer can assist us in finding the ,turn-
.1

ing points for a fdnction. By writing a program we can search be-

tween zeros for these turning points. 'Between every two successive

pairs of X-intercepts, there is a relative maxim 4n or relative

minimum.

255



5.3 --'7

"Double Synthetic Division" Algorithm.

Given:. P(x) = anxn + a3x3 + a2x
2
+ aix + aos

n < 7

1.1 Let x = c:

2 Calculate T(x) by a nested form subroutine, R = P(x).

Remember-bn...b, bp and b0; n < 6 coefficients of the

quotient Q(x) : Ro .-- b0, R10-- b1, etc.

3) Display

, 4)- Calculate Q(x), S = Q(x)

lc*
5) Display S, STOP,

I

S.

If R = ,.c is a zero of01(x) and x - d is a factor.
1

If S = 0, (x, R) is a turning point.

f

e



5.3 -8

Exercise Set 5.3

1)' Use double synthetic division ro verify'that the point (1, -5.5)

3is a relative minimum for the function P(x) = x3 + 2x2 - 6x - 2.

(2 - 7) Write a program OW then Uhe it to find all the turning I

points'for the following functions within the interval listed. At

most there can be n-1 turning points for a nth Aegree polynomial.

Let\ d = 1.

'2) A(x)= ;x3 = 6x2 66 3

3) B(x) = x3 + 3x2 - 9x'+ 5

.4) (x9 = 2x3 -: 3x2 - 36x + 10

) D(4 = x3 - 3x2 9x + 6

6) E(x) = 3x4 + 4x3 - 12x? + 3

7) t.(x) =
5

- 5x + 2

E-1, 3]

E.-4, 2] .

[-3, 41

[-2 5]

1.-3, 21

2]

1

8) The zeros of G(x) = -x
3 + x2

+ 2x .are0.0, 2 and -1.

a) Estimate to the nearest tenth the relative Maximum point

for G(x).

b) Estimate to the nearest tenth the relat e minimum point

for G(x).

(9 12) Find the equation of the line tangent to the function

for the value of x ash listed.

9) f(x).= 4x3 19x - 15 at x =-1

10) . g(x) = x
4-

- 2x
3_

-_,3x
2 -.x + 5 at x = 2

11) h(x) = 2x3 - x2 - 22x,- 25 at x = -1.5

12) k(X)= 2x3 + 3x2 + 2x - 5 at Y
/".

2 5 .7 -

1
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5.4 Calculating Zeros of a Function

In this section we will Program

to-find thedreal zeros of a-function

of accuracy. C

5.4- 1

the, calculator or cOmPt/ter

to any pre-determined/degree

As you may halie observed fran the graphs of continuous func-

tions in previoui sections, the second coordinates for conseehtive

x values help in estimating the location of the zeros..

If there is no zero of function P(x) between two values of xt.

thenthe function does not intersect.,the x-axis between these two

values and the secondtoordinates have the same sign.

CASE B

Pt

.

in each case P(xl) P(x2) > 0

f a zero is located between two values of x, the graph inter-

sects the x-axis at least once between.the two values and
J

CASE DCASE C

*V)

lti,141)

it each case P(xi) P(x2) 0

25&



5.4 - 2

EXAMPLE 5.4.d Given: P(x),= x4 - 2x3 - 4x
2 + 6x + 3.

4

F4Ading the values 9f P,(x) for each X in the interval
1

4-2, 3] with the, common difference of :5 yields

x P(x)

.5 4.8

1. 4

1.5 1.3 .

-1.0

2.5 .8

.3 140

The arrows indicate where the function values change

sign. There must beat least one.x-intercept between

the respective x values for these P(x). Since a foprth

degree equation can have no more than four zetbs, there

will be one zero beL.1een -2 and -1.5,16ne between -.5 and

0, one between 1.5 and 2, and one between grand 2.5.

If we sketched the giaph of P(x), each zero could

probably be estimated to the nearest tenth. It would be

quite difficult to be more accurate unless we-narrowed

our interval and decrosed the common difference. -We

could then test x.values until the sign of P(x) changed,

repeating the process of "narrowing the interval. and

common difference. This is a most time consuming task.

A faster method to obtain a Zero of the function

would be to find the midpo'int of the two x values ,
-x

1
+ x

xm 2 .

ind P(x") and compare this value-against

one of the known function-values.

2 yd



Let P(x1) =,y1, 12(x2) = y2 and P(xm) = ym

ILLUSTRATION I ILLUSTRATION II

if Ym Y2 4 0

Replace'xi with xm

find new midpoint,

evaluate, etc.

4,

5.4 - 3

ifyrilr2 ' 0

Replace x
2
with xm

find new midpoint

evaluate, etc.

0
Continue this process until the two x values agree to

the specified accuracy. This repeating process is Called

iteation and the method is called the interval bisec-

tion method.

Interval Bisection Algorithm

1) Remember x x
2

xi + x2
2) Find =m

2

3) Find lqm)

4) Find P(x2)

5) 'If P(m) P(x2) > 0,

6) If p(m) P(A2) 4 0,

7) If 'P(m) P(x2) = 0,

x24--- m-, Displarxi,

X14--. m, Display x1, x
2

go

STEP

8

to

DISPLAY m, STOP

8) Compare the new..walues for xl and x2.' If they

agree to the required number of decimal pracc!,,

STOP.
2i;()

9) GO TO STEP 2



F
Pow

-5

'44

16,

Nips interval bisection algoriehm when used to find the4zero
A

of P(x)-between 2 and 2_5 in EXAMPLE 5.4.1 requires 12 iterations

to obtain an accuracy to the nearest ten thousandth.
3

A methRt that will much faster than interval bisection'i6
- ,

.1 _,
based on the familiar linear interpolation approach you used in

Interthediate Algebra. When interpolating, two points <xl, yl) and

(x2, y2) are selected On a continipus fupction. If t e two points

are picked close enough together., A line )egment.drawn between them

"is not very distinguighable from the actual curved line of the func-
...

.

. . --

tion. 4y using equal ratios from similar triangles An interpolated.
.

y value is computed that is close to the actual value yA on the curve.

tor the illustration the two points art selected quite far apart
.

6,

Y2
Y.

yl

xA-xl y - y/
x2 - xi y2- yi,

This-sate stiaightness.assumption is'used when finding the

.\
zero of-a.function. By a xecurtive process the error made in esti-

,

.

mating is successively "narrowed down".

011
To find this x value where P(x) = 0, we begin byselecting
4 .

- ', .AI
two poiptt A 0R0 $ such 'that -their sucond coordinates are oppoilte

41," a
in sign.. If .che function is continuous, this insqes a x=dniereept

.., ,,,

2 6.1 1

S.



5.475

t een A.and B. By aspuming the curve is a straight line, we

obtain an estimate for the zero of the function.

1..

V

We compute the value of c by using slopes.

0 - y,
Y2 Y1

- x )(y2 - yl) = -yl (x2 - xi)

xlyl 2Ni

Y2 Y1

2 yl) x1Y1 x2y1

Y1 y2

xly2 - x2y1

'Y2 y1
f

We then compute P(c) and continue the methOd Usingpoint (e, P(c)):
*

th (ki,y1) or (x2,y2 depending on which points second coor na,4
has the opposite sign as (0. Aswe continue the process each line

segment crosses closer to'the point where P60- tue ,isired zero

of the function.



1
tr.')

-1` 5.4 - 6.

4
Lt

Repeated Linear Interpolation Algorithm.

1) Remember x
1
and x

2

2) Calculate yl and
.

xl Y2 x2 Y1
3) Find c =

72 Yf

(To save steps the 2:4- and - keys may .
be helpful, when using a cLilator.).

4) Calculate P(c), IF P(c) = 0 STOP

5). If P(c). yl .< 0 GO TO STEP 7

6) If_P(c) yl 0 (-GO TO STEP 8

7) (x2, y2) *----(c, P(c)), display x2 GO TO STEP 9

8) (tyy1) 4-- (c; P(c)), display,x1 GO TO STEP 9

9) When x
1

or x
2

does not change the value to the decimal

.accuracy reauired STOP o-%erwise GO TO STEP 2.

2613



'Exercise Set 5.4

4

5.4 - 7

1) Draw four sepaiate illustrations, two of increasing and two of

decreasing-functions, such that in two illustrations (c, P(c))

would continually replace,(xl, yl) and in two---41ustrations

(C, P(c)) continually replaces (x2, y2?.

2) Use the linear interpolation algorithm to find the zero of EX-

AMPLE 5.4.111 between 2 and 2.5 to the nearest ten thousandth.

.Count the number of iterations required.

3) Find"the remaining three zeros of EXAMPLE.5.4.1 to four decimal

(4 -

place accuracy.

Find all the real zeros of the following functions to four

place a curacy:

4) A(x) -= x3 - 3x + 1

5) B(x) = 20x3 - 30x2 + 12x - 1

6) C(x)= x4 - 3x3 - 20x2 - 24x 8

7) D(x) =' x4 + 5x3 - 27x2 + 31x - 10

8) E(x) = x3 + 4x2 + 11:01X + 15

9), F(x) = x3 + 2x2 ? 7x +,1:

2 4

.1b

.



5 5 - 1

40

5.5 Factoring Polynomial Functions

In Section 5!2, when possible, polynomial functions were

written in factored form. To obtain a fac ed polynomial ex

pression we make use of the remainder and factor theorems used

in Section 5.3.

P(x) t R.
= Q(x) +x - c x-c

P(x) = Q(x) (x-c) ± R

if x = c

P(c) = "Q(c) (0) ± R

P (c) = R Remainder Theorem

If R = 0, P(c) = 0 and x-c is . 1

a
.

facipor of P(x) Facror:Theorem .

.4,

I
4 ...,.._ .

To find the Amainder,substitute values for x in P(x)...

If the result is zero, obtain the remaining polynomial after 1

factoring by the
N..

synthetic-process illustrated in 5.3.

111If the polynomial has rational' factors, e will be a

rational number. Only, certain values for c need to be tested. 11

. ' .

L

Rational Zero Theorem

*
Given P(x) = a

n
xn + a

n-1
xr-1 + a2x

2,
+ aix + a

0

a
n
... a l' a 0 being rationals. If P(x) has a rational

/

zero, its numerator is a factOr of a
0
and its denomina-

for is a factor of a
n

. 265



5.5-2

4

-0
Proof: Assume this rational zero is in simplest, form

qt, p and q are relatively prime integers having no commorifactor.

Since 2 is a zero

fp. n /2. n -1+ fp 2 .+ (R) + a = 0p(q)
n-lq/ 1 q 0

multiplying by qn we have

(1) a
-

np- + an-1 p
n-1q + agi 2

q
n-2

+ alp 1
q
n-1

+ aoqn = 0

or

a 2 n-2
+ a

l
pqn-1 + aoqn = -anpnn- 1) q1 a 2P q

q is alliptor of each term on the left side,, therefore q must be

an exact factor of the right side Of the equati811,..__p and q are

relatively prime, the only conclusion is that q is a fa roof an.

Similarly from (1)

n 2' n-2 n-1anp + an-1 q q + ainq = -aoqn

p is an exact factor.of a0

EXAMPLE 5.5.1 Factor the polynomial

p(x) = 4x4 + 12X3 - 15x2 - 38x + 30

4

Solution: From the Rational Zero Theorem, if R

is a zero p is a factor of 30; t (1, 2, 3, 5, 6,

10, 15,,30) and q is a factor of 4; It (1, -2, 4).

2 6



. 5.5 3

+ 1 2, 3, 5, 6, 10, 15, 30
Possible rational zeros

1, 2, 4
. *

which are the integers
±

(1, 2, 3, 5, 6, 10, 15, 30) and

the fractions -.1- (k, Al, 3/4, 5/4, 3/2, 5/2, 15/2, 15/4)

4

Rewriting the polynomial in nested form and testing the

v integers by program, yieldS

P(x) = x (x(x(4x + 12) - 15) -38) + 30

x . P(x)

- 6 2370

5 845
1- n-J 7

- 2 14
- 1 45

x

0

1

2

3

....0--\

P (x)

30
f --

-7
i---

54
429

No need to continue

as P(x) will continue

to increase.

There'-'is a zero between 0 and 1. The only possible

rational zerosjhere are k, k, 3/4

x P (x)

C
No rational eros.25

.5

.75

19.8
9 t--

-. 6
from 0 to 1.

There is a zero between 1 and 2% The only possible rational

zeros are 5/4 and 3/2 I

x P (x)

1.25

1.5

-7.7

*0

9,

P(1.5) = 0. Therefore x - 3/2 is a factor.



By synthetic

3/21

division

4 12

6.

-15

'27

18 12

-38 "30
18 -30

QQE)= 4x3 + 18x2 + 12x - 20

-20 I 0

P(x) = (x-c). Q(x) + R

P(x) = (x - 3/2)(4x3 + 18x2 + 12x - 20) + 0

P(x) = (2x - 3) (2x 3 + 9x2
+ 6x - 10)

5.5 -4

Any factor of Q(x) will also be a factor of P(x). TI ere

is no need to retest values that did not work for P(x).

We will now search for any remaining rationalzeros,

One possibility is that x-3/2 is a factor more than once (Graph

is tangent to x-axis)

Q(x) = x [ x (2x + 9) + 6] -10

x !(x)

1.5 26

Other' possibilities: Between any two x values the graph

of the function could have intersected the x-axis an even number-

of times. The sign of the f(x) values would not change. If the

sign changes therJ could be an odd number of intersection points.

Inspecting within the interval -3, -21 we obtain

another zero

1(x)

-2.5 0 -5/2 1 2 9 6 -.o

-5 -10 410

26j.
2 4 -4 f 0

`o



5.5 - 5

P(-) - (2x 3) (x 3) (9x2 + 4x - 4)

P(x) Ilop(2x 3) (2x + 5) (x
2
+ 2x - 2)

Once we have reduced the polynomial to an expression where

a quadrrtic is remaining, the

necessary, by the quadratj.c

x
2 + 2x - 2 =0

x= -1 3 .73

x = -1 3 = -2.73

Final factored form

1 two 'zeros may be obtained, if

P(x) = (2x-3)(2x+5)(x ;or 1 - 1.5)(x + 1 + T1)

Two rational zeros 3/2, -5/2

Two irrational zeros -1 + -

Z4.

Irrational zeros of the Form a + 41:7 will always occur as

solutions in conjugate pairs a + 07:T, lib. As mentioned in

Section 5.2, this is,also true for zeros that are not real. Complex

zeros will occur in ,conjugate pairs-a + bi, a - bi.

Exercise Set 5.5

(1,- 12) Rewrite the following polynomials in factored form.

1) A(x) = 6x3 + 11x2 - x - 6
1

2) B(x) = 2x3 - 5x2 9x. + 18

3) C(x) = 2x4 + 11x3 + 9x2. 27x - 27

4) D(g). 2x4 - 11x3 21x2 - 16x + 4



5) E(x) .x3 - 2x2 + 4x -
6) F(x) = 3x3 - 5x2 + 3x - 5
7) G(x) = 3x4 - x3 - ,7x2 4x - 20

;3 15x2 + 9x - 27
9) 3(x) = 8x - 36x3 + 54x2 - 27x

10) K(x) = 45x4 42x3 - 4x2 + 8x

4

2

it

I

4'

5.5 - 6



5.6 Rational Functions

tions

Mb

A rational function is a quotient of two polynomial func-
N.

1R(x) =
f (x)

g (x)

g(x) # 0

Rational functions are similar to rational numbers and may

be expressed in various ways
4

4 8 12 -40

x i
9
t 1 -2

x +1 -2x - 2
+x (x+1)(x

2+1)

The.simplesi rational expression is when the numerator land

denomipator have no, common factors. The expression is then in

lowest terms.

For the iational function above
1

x +
is in lowest terms.

The graph of this rational function .however, will differ from the

aph of because of a:fferent domains.
x
2+ x

The domain of a rational function R(x) =
f(x) consists
itir

of all real numbers except for the real zeros of g(x). (This

last requirement is to insure that R(x) is defined; that is, the

denominator ts not zero.)

re/

271
10,



EXAMPLE 5.6.1 The domain of

real numbers x # -1.

The domain of

x, x # 0 or x # -1.

1

i7FT

x + x

5.6 - 2

consists of all

"l'is any real number

For some disallowed 1.eplacements of the variable in a

rational funCtion, both the numerator and denominator equal zero.

For other replacements only the denominator equals zero.

f(x) x
2

- 9EXAMPLE 5.6.2 S (x
gtX)

= --r =

Solution: If x = 3, f(x) = 0 and g(x) =60

f(x)
k±/T(x) =

-ETU

if x= 2, only g(x) z 0

If a rational function R(x) x)
g<x) has a

value for x = a such that g(a) = 0 and f(a) # 0,

then the function R(x) has a vertical asymptote
*

at x = a.

If a rational function R(x) f( )
has a

value for x = a such that both g(a) = 0 and f(a) = 0,

then the function will have a "missing point" on the

graph where x = a.

An asymptote is a line toward which a graph tends as x "gets close"
or approaches some specific value or as x increases or decreases
without bound

'27'2



2x +1---
For the example

I

as from either direction only g(x)---113. and

x

1.99999

-2.00061

For S(x)

T (x)

-499,998

+500,002

2
x 9
x - 3

as x 4 3 both f(x) and g(x) :-"IP 0 and S(x)--,k

x =*2 will be a

vertical'asymOtOe

x*

2.99999

3.00001

S (x)

6.00000

6.00000

EXAMAIE 5.6.3

at x = 3, there will

bo a miecing nnint

li(x)
= x3 - 5x

2 + 6x

(x-3)(x-2)

M(x) will have missing pots at x = 3 and x = 2

EXAMPLE 5.6.4

9

N(x)
(x -3) (x -2)

vertical asymptotes at x = 3

and x = 2.



t

- 4

If the numerator of a rational function is
-

one degree.more than the degree of the denomina-

tor, the functionmay -contain'n-e *"slant" aSmptote.

EXAMPLE 5.6.5 R(x) =

Solution: By division R(x) 7 sxi Al'

Fc

4as 'xi oo +0 and R(x) -->.1x

, 1
R(x) = 1.-x is the slant asymptote.

x = 0 is a vertical asymptote.

If the degree of the numerator of a rational

function is less than or equal to the degree of-
-

the denominator, the rational-function will have
/
a horizontal asymptote:

*
A slant asymptote is an oblique straightine.

. -

2 74

are
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.1ne

...) . , A

- , . /
,

EXAMPLE 5.:6.6 f(x) and g(x) same degree
(

By divisions,

-4 S(x) = 3 +
4

as Ix I 00 S(x)

S(x) = 3, horizontal

asymptote

x vertical asymptote

5.6 - 5

EXAMPLE 5.6.7 deg f(x) deg g(x)

x-1
Solution: T(x)NT,

6 xL-4
110 vertical asymptotes.

. ,

'Divide each term by the Lghest degree variabtle.

x 72 and x = -2 are-

4

as. 00

T( x) = 0 i,s a 'baron jr) ta' asymptote.

04

r

..."r

f-'
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Exercise Set 2.6

5.6 lit

1) Write a program to assist. you in graphing F(x) = 8x + 30
2x - 3

for an interval of',E-8,'12] d 1.. Wkt difficulty
41

arises when d is changed to .5?

(2 - 4) Over,the years, many functions have acquired special

names. Investigate the followin functions, diqermine when.possible

the domain, rave and asympto:ep. Use the.algo'rithms from previous

sectionv to graph each function.

2) The "serpeptine" S(x)
IP

x + 1)".

Let a = -6, b = 2, Interval [-5/5]..

-
3) The "piiester" P(x)*x2

ex'

-.1)
2

for a = 1, b.= 2, Interval' [-5, 5] re)

4) The "witch" W(x)
x
2 + a2

for a = 2 Interval [-5, 5]

(5 - 12) For the following Rational. functions; use the glg2rithms

to assist ybu,in sketching the graphs within the interval,listed.

5)
M(x)

x.(x + 1)
(x+Wx-1) [-3, 3]

[-4,
x)

6) T(x)
2(x 1

(x4-1)3(3x-2)2

7) U(x) = 3X
2

(x + 1)

2(x-2)2(x-1)

8)b, :V(xr= (x - )

ft x3 27,

.F.± 13x 3 -
9)-. N(x)

x
2

+, 1

, 3]

1

E-

27

3-

of

9

- I
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i*

x
3

0721

10) A(x) = C -4, 4

2

,11): B(;)
x,(x - 2)

(x-1)3

12) C(x)

13) Given Y

x + 1

5.6 - 7

;Sketch: the function. U)ng various intervals, determine

the highest and, lowest value Qf y. (Thi\Krge. of the

function)

14) . Determine the anz% of the function
4.1

An algebraic a proach

x2

x
2

-

using
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-5. 7 Area

Many times in mathematiy you have been required to find

the area of rectangula, square, etc. regions. In this

,section you will be expected to evaluate- the area of irregular

shaped rations. Problems concerning areas, volumes, masses and

others mathematical: and physical topics will be in abundance

during future courses.. In the calculus this will involve a method

--called integration. Uritil that time, however, we will use the

calculator and the formula for the area of a trapezoid to solve

II.these problems. 1
0. ...

Consider an irregular shaped region bounded by a continuous

1

4

function f(x), the xL-axis and two vertica/1 lines x = a and x =,b.

.(61A
I (AA

r 7 %'.
010

Ar ok-

If we wish to find the area .of region S (shaded) , we Aty

form- a 'trapezoid and evaluate .its area.

K = kh (br + b2)..

K = a)(f(a) 4- f(b))

Area k will approximate the required area S. The

approximation is not too near the area of S. However, if we di=
, .

vide the,interval [a, bJ into n smaller congruent iFtervals,

11



5.7 - 2

.1(
0

1

:n trapezoids can be formed and the sum 4A the areas of these n
II

4
trapezoids will

t

be much closer to the area S.

0)k

As we increase the number of trapezoids, the area may be
. f

computed to a finer measurement of accuracy.

S = k
1
+ k

2
,+.1s.

3
k
n

k1 =. (Xi Xo) [df (X0) f(x1)]

4 .*

k2
1/2(x2 xi) [f(xl) f(x2)I

k
n71

= k(xn-1 a--) .

[f(xn-2
) f(xn-2

)j

1/2(gn xn-1: ) [ f(xn-1) xn.)]

X XA
S = 1/2 n,

n
[f (x0) 2.f(xd + 2-f (x2) + ..:2f(xn_i)+f(xn

.1

OR

S ()(1 x0) [1/2 (f(x0)+f(xn)) f(x1)+If(x2)+'f(xn

2 -73



Area by Trapezoids Algorithm

1) Remember A, B, N

-
2) Let H BRA

, Remember H

3) Calculate f'(A), f(B)

f(A) + f(Bj
4) Let C

2
, Remember 1cl *

5) Let N = N-1, if N = 0, Go to 9

G) Let A = A + H

IOC
7)- Calculate f f (A)

8) C = C + f(A), Go to 5

9) S =
0

H C

10) STOP

EXAMPLE 5.7.1 Given 'f (x) =
1

1+x2

5.7 - 3

*

find the area under

the curve fo five decimal places for the interval [0, lJ

N = number of rjYl
a

*
Abgolute value symbols may be used when the'artra of the entire
region being calculated is "below" the x-axis. the
area will be.represented as a negative number.

233



I

for Ak--- 5 S = .78373

for N = 10 S = .78498

for N = 20 S = .78529
sr

for N = 50 S = :78538

.for N = 100 S .78539

The exactvalue using Calculus is = .785398.

A function tay "dip" below the x-axis. Care must therefore

be taken that a zero of the function:is not located in the interior I
'of one of the-n trapezoids. Inaccurate results would then be at-

=tattled-. Ond'approadh that will help °avoid difficuttyis to compute

the
area above apd the area be the x-axis separately. Then add

these areas togetheA

EXAMPLE 5.7..2

Solution:

f(x) = x
3

- 3x2I+ 2x

Find to the nearest hundredth

the area of the region "between" the

x-axis and the function for the :n-

terval [0, 2 3 .

0

By factiorg

f(x)'= x(x-2)(x71) zeros are at 0, 1, 2

For N = 50

For'N = 50

S
1

=

S
/

.250

.250
symmetrical regions

FI 4

Total Area '.50

2s1

I



4

5.7 - 5

This same method may be employed when finding the area be- 4.

tween two continuous functions f(x) > g(x).

EXAMPLE 5.7.3 Find the

area to the nearest tenth

for the region between

f(x) = x3 an g(x) =.-x3,

interval [0, I

For N = 50 s
1

= 4.00

For N = 50 s
2
= 4.00

Total Area 8.0

Exercise Set 5,7

(1 - 7) ',kind the area of between the graph of

the x-axis within the interval listed.

1) f(x) =x3 [6, 4]

2) g(x) = x
3 - 4x [-2, 2]

3) h(x) = x
3 12x + 4 [1, 31.

4) j(x) = (x + 1)
3' [0, 11

6 x25) 4c(x) = x6 x CO, 11-

6) /,(x) = 2x2 + 2x8 [-3, 01

7) m(x) = 2x3 - 5x2 + 2x [0, 2J

252
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Given f(x) and g(x) as graphed, explain a procedure to

find the area of the shaded region between the two curves.

The x-values of the points of intersection are a end b.

(9-10)- tging cirettrudsimilar to problem #8 above, calculate

the area of the region enclosed by the curves.

9) A(x) + 1 B(x) = (x-1)2

0i0) =
x2 x2 (x2

-

r4

.4 6

`23
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Test 5.8 - 1

5.8 ChapterV Test

(1 - 6) Multiple choice

1) Which of the following is a polynomial function?

(1) f(x) = '2x213 + x + 1 (2) f(x) = 12

(3) f(x). = x2 + 3x - 7 (4) f(x) = x2

2) Whichof the followinAg is a continuous function?

(1) f(x) = tan x (2) f(x) = x37 + x14 - 17

x+1
(4) f(x) = xx-x-T-7

*3) Which of the following functions ha -s- exactly three zeros?

(1) f(x) = 3x2 + 3x + 3 (2) f(x) = 3 sin x

(3) -f(x) = 3x (4) f(x) = 3x - 3

4) Which of the following functions is tangent to the x+axis at

(1) f(x) = (X-2)(x+1)(x+3) .,(2) f(x)*.=.2xti

(3) f(x) = (x-2) 2(x+1) (4) f(x) = 21n x

5) Which of the following functions has a "hole" in its graph at

x = 2?

(1) f(x) - (x+1) T2)

(3) f(x) = (x-2)2
.1%

(2) f(x) = V-71-

(4) f(X) = x-2

6) Which of the following has an asymptote?

(1)

(3)

f(x) = x
3
+ 2x + 1

f(x) = sin x

(2)

(4)

+1
f(x) ="x----.-pr

-t-

f(x) = in

2s4



Test 5.8 - 2

7) ,.each of the following refer to the polynomial:

x).= (x+2)(x-1)(x+.5)

a) What are the Zeros of f(x)?

b) Make a rough sketch of f(x).

c) Write f(x) as a polynomial in 'standard form.

d) What is the equation of thd line that is tangent to

f(x) at x = -1?

e) Determine an interval that contains the relative minima

of f(x).

8) (a - b) Refer to the following \oolynomial:

f(x) = 9x5'- 15x44 34x3 + 26x2 - 27x .+ 5

a) Determine all possible rational roots foi`f(x).

b) Determine the rational roots of f(x).

9) a) Sketch the graphs of the following two functions:

f(x) = 2-x2

g(,) = -x

b) Find the points that satisfy the two equations simultAneousl .

c) -Find the'area bounded 1:: the two functions (nearest hundredt11.
AO

Use N =

2 S 5
. 4
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CHAPTER 6. EXPONENTS AND LOGARITHMS

6.1 - 1

In this chapter your ideas`--about exponents and logarithms

will be ex ended.

From Rational to Real Exponents

Pn your earlier study of mathematics, positiire integral

exponents were characterized by the following definition:

l .Nfirlition 6.1.1 b
n
= b-b .b ... b, n a positive

n factors

integer.

You can easily calculate exact answers for expressions like

2
8

or 5
7.

by either using the keya ytx command or re-

peated multiplications. When numbers become larger than -can be

exhibited on the 'display they are written in scientific notation

and the exact value

5.5855

is not .immediately available.

17

Clever algebraic techniques can be employed to remedy this situa-

1

tion.

4.

.25;;
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5

EXAMPLE 6.1.2 Determine 721 exactly.

721 = (77)3 = (82354353 = (823X 103 + 543)3 ,

= (823 x 103)3 + 3(823 X 10V(543) +3(823 X 1035(543)2

+.5433

(557,441,767A 10
9) + (1,103,368,941 X:10

6
)

+ 729,982,181 X 10
3 + 160,103,007

557,441,767,000,000,000

1,163,368;941,000:000

729,982,181,000

160,103,007

7 558,545,866,083,284,007 11
. .

EXAMPLE 6..3 Determine 3
25 sxactly; .

I

25
'3 =

18
373. 3 = 387,420,489 [2187]

= 387,420,439 [2 X 103.+ 1 x 102 + 8 X 10
1
+ 7.j

1

= 774,840,978,000 ,

38,742,048,900

30,993,639,120

2,711,943,423

= 847,288,609,543

thatthat each of the ?apples made use'of exponekand

scientific notation. EXAMPLE 6.1.1 used the identity

+ y)
3 = x

3 + 3x
2 + 3xy

2 + y
3

. EXAMPLE 6.1.2 used the distri-

/

butive property. maven the most sophisticated computers will only

display a predetermined number,ot digits so such techniques are

6 ,J

often necessary. 2 S';
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6.1-3

Rational exponents have meaning when we define

Definition 6.1.4

bx/Y ='AZT-74,

b
x/

Y =

x and y are'integersAnd is reduced:

4 0, y odd, x and y are integers and

C.
'IC- is reduced.
Y°

We must be careful to notice that even roots of popitive

numbers designate principal roots so ITT equals 2, not 2.

Recall also that even roots of negative num.- e imaginary

so FT.= 2i. Most calculators cannot even proce dd roots of ,

negative numbers so we need to 'exercise a mottle good ma ematical

eense.

EXAMPLE 6.1.5

'N.3 12T = 3.

\J -27 yields an error message but

\ Since odd roots'of negative numbers are negative

.6 -27 =

EXAMPLE'6.1.6

TIT= 3.1623..

NITI76 yields an error message but

Since even roots of_negative numberp are imaginary
!

IFTIOT = 3.1623i.
1

, ,

It is important to rerilerriber

.

that, yoir dipplay is always 'a

rational number-(because-it terminates) so oft'en yiou ae determining



a rational apprnximnf'inii n an irrntinnnl number:

6.1 = 4 V

Rvymiefirtirir:T,
- ,

irrational numbers are numbers that canmt be expressed as termtlia-

ting.or repeating decimals.
t

Real exponents have Meaning when we accept the following

very important statement:

Every real number, can be expressed al

then sum of an infinite series, of rational

numlyers%,

The prOof of this statement is not within the realm of this
course, but you have seen these ideas before in .Chapter 2. You

will gee further consequences of this, statement and, a proof 'in

future mathematics .courses;i
sp

EXAMPLE 6.1.7

ie the limit of the series

3,28 is the limit of series 3

1 + f+i+
+ .2 + .08

1 +

+ .0000+ .000

-3- isthe limit of the series .5 + .05 + .005 + .0005 +

\r2 is t he limit of the series 1 + .4 + .01 +`.004 + .0002 j

Now we can view real e)tpcluentE in this new setting.

EXA1111115E 6.1.8

82=
8
1 + + k +

29

I

...=
- 8. 81/4

= 8 !ff NIT

8 Vap



r
1

43.28^28
= 43+ 2+ 081-004+

6.1 - 5

= 43. 43". 411117--I--. 1

= 43 - \5/4- - 1 - 1

6 =
. 5+. 05+. 005+. 0005+. . 6 6.05. 6'.005.6.0005.

%us YO:e
= 6 - 6 - 6 .6 -

t, 67°0- .

-5i2-= 1+. 4+.01+. 004+. 002+. 5'4 54 5.01 5:004 5.0002...

In general:

Definition 6.1.9
t
1

t
2

t
3br = b b b ... where r is real,

51'; \DS` - VI/ 5

is rational and lim t = r
n.-0,00 n

Later in this chapter we will further support the existence of

real exponents when we consider exponent+. functions.

It Is easy to believe correctly there are infinitely many

irrational numbers when you consider all real exponents.. It is

:also easy to believe correctly that any computation ignores small

numbers after awhile so our display however good, must be only an

approximation.

1

1
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.c

EXA111 LIE,6.1.10

I

Approximate*rr-

6.1 - 6

each of the following by using the fiist

fiNlre terms ofetheinfi,nite series expansion of the exponent.

Check your results by direct calculation.

3.r-IT. 75 37 °3= 8 '= 8' = 8 8' :
8.003 0003 00003

- 8'

- 1.866 (1.6044)(1,0063)(1.0006)(1.0001)-

2 .

= Z .by direct calculation.

Notice that 1n5- is exactly 2 because 23 =

--pnni

5"'
51 . Z. 1 (iT - 1:7321 by calculator)

51. 5.7. 03.6.002 .5.0001

5(3.0852)(1 0455)(1.0032

16.2437

.0002)

5' 16,2425 by direct.. calculation.

Notice that 16.2425 4 16.2437 because or 4C7321

We end this section with Flimmary of properties of real

exponents:

Laws of Exponents '6.1.11'

-

(a) b° = 1 if b

(b) b-r -' 1

br

(c) br. bs = b
r+

"(d) (br) s = brs

# 0 (0 0 is not defined)

b# 0

b > 0

b > 0 291
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.r.

)

,:

f
1

6 . 1 -,f7 '.
2

a, --- % ,
,...

..J, ..

(e)

(f)

br

bs
= b

r-s ?
b > 0

r

0 b > 0
,

(g) (ab)r = arbr a and b are3not both negative

r
(h) (g)r

a
a and b are not both negative,' b # 0

b
r

,...r

.
.

r

Exercise SE 6.1

N.
,...

(1 - 6) Evaluate each 'of the following expressions

(a) on your cal cut as they are written

(b), on your calculatat after each has been simplified

Example:"

a 1

4
2

4
ti-2

3

'(,a,) 42 4
if

42

4')

42 /A
(b)

3
=

4

4
7

16(7.1030)

8 ,

'1) 08( -2)
12( _1)9

3)
3'

9
(.3)

2

.09

-.- 14.2060

2 -41 - 3
4, 7 = 4t + tea

41/2

t'

-2) \J.81(.0625) 5

41

2 Q -)v 4

,

3
5

2/
a ± 54'

.

. 5 113

r
- 1-

,

'I

t2.4 -2- = 14.2060

1



:, * a Lrfd

5) (2 -,)

7) (2,7)-15-'
.32

(9 -,14) Evaluate each of the following expressions to four

decirlIal places. : I

tr2-

6) (i3")

8)
ITC -8

)

6ti?

6.1-8

1

9) 1f-74

11). 2i `1.1273

13) -9

.

10) Vt7T.

12) -5i J cos 100

14) -47

(11.5 - 22) , Evaluate each of the following by using a series ex.- -

papsion of the exponent. Compare your results with direct .calcu-

Lai-Lo.

1 I
15) 8

2 (use 2 = 1 + k + 1/2 + 17 .. + 16384
i

.
V.,

73
1 1 1 1 ,

16-) 9' (use = 1 + + + +9 77 :- 1968 '3

17),, 27
1

(use .3 + .03 + .003 +JO Q03 + .00003)

4
18) 5/

(7
(use 7 = .5 + .07 t .00t + .0004 + A0002)

-4"1-71%19) 6..1
kri

(use vc = 1.41421)

20) 8.6127 (use E = 2.23607)

21) q (use 0 = 3.14159 in the exponent)

22) x.ise = 1.73205) /

.4

/4:

(23 26) 'Determihe the exact -ilue of of the following:

110 23) (1734820 24) (12345)3

25) (27)
8 16) (2)

40

27) Fill in the blank With' >, < or =

r- "T `r OTE
( 02)" (1/2"-ria 3



II. ' 6.2 Relations Between Exponents and Logarithms

4.

6.2 -'1

pogarilitihms, logs for short, are, a particularly important

kind of exponent. A log of a number is a real lumber that can

be characterized by the followikg definition:

Definition 6.2.1

b = N .

Another way to express this relation is to say:

I

1 The equation x - 19g ,N is equivalent \to t

equation N = fDx.

ti

4

Definitions (6.2.1) and (6.2.2) expre s exactly the same idea in
' J,1r- different ways.

11

EXAMPLE 6.2.3

*or

1:
.1S

1

log 100
. 10 I = 10

2
= 100 (6.2.1)

G-0

4 4

; /Th2 = log
10

is equivalent to 100 = 102 (6.2.2)

login7
10 = 10' 8451

= 7 (6.2.1)

%84,51 ---logio7 Is equivalent to 7 = 10' 8451

(6.2.2)

From our definitions, the.familiar laws of logarithms follbw
.e

immediately from the laws of exponents.

294
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Rules of Logarithms 6.2.4

(a) logy xy) =.1ogi3x +.1pgby

(b) logb(y) = logbx - lagby

(c) logb(xY) = y logbx

(d) loglArc) = logbx

6.2. -.2

Before Computing machines became prevalent the power of

logs lay in the fact that by them multiplication and division

A

were reduced to the simpler operations of additiOn and subtractioh.

Finding powers was made much easier'and finding roots became

reasonable. orThink of how difficult would be find 71-ff t i mu to in
"II

.J-T without a calculating machine or logarithms. An "Old-fashioned':

calculating device-, the slide rule, isdesigned around the theory I
ti,

of logarithms. A curious t..1:!it of math history is the fact that,

logs were discovered early, in the 17th century before exponents

. were in use.

.

Commot logarithms arc 1^gs ,Aose baseis-10. When no ease
,f '

,

ill
is designated, as log 100 = 2, it is ,assuMed in this text that the

.
.

ba te is 10. Tables of logs are
.

-l-tten in base,n by tradition II

L./

and the fact that our number system has developed around the number

16"' . ' IIi

a

,"Logari'thms can be produced-for any base that is A positive

number other thanl. Let's develop a four-place table of logarithms

for base .3.

0 D



6.2 - 3

'n 1 2, 11_ 3 I 4 i - 5 1 6 7i I 8 . 9 1 10

login I oI. 1 .01o1 1 I 1.26201 1.4650 11.6310
. 1

1.77121.1.89301 2
i
12.-0940

3°

1

=

=

1

3

so log31 =

so 1og
3
3 =

0

1

We can determine 1og32 by trial and error

3'5 = 1.7321 ,too small (.5 = 2;1) *

3.75 = 2..2795 too big ('75 -\'5+1)

3'625 = 1.9870 too small .025 -'.75+.5 )
4

6875 . 6875 .625+.75s.
=

,

N
2:t2Tp too big

2 1'

3.6563
= 2.0565 too big ( 6563 .6875+.625

)
. 2

3.6407.=
2.0215 too big

(.6407 .6563;.6111);,

3
.6329 = 2.0043 too big (

.6329 .6407+.625N-
2

3
.6290 = 1.9958 too small (

.6290 .6329+.625
)2 .

3
.6310' =2,0000 Hurahl'

Z

0310 .6290+.6329
)

/V

The following verbal algorithm does this computation. The algorithm

determines logba. when it is already known that logbc..clogba4logbd

and logbc and logbd are known.

*
Notice the averaging technique employed here. It is extremely
efficient and a device that can often be used in many settings
to converge. on an

2!4f



#

2.

P.c.m..m1-,er a, l-.

.

et-- logbc

6.2 - 4'

r

..._

(

3. f _,..4-- logbd

.

5.
-\__.

Compute bob

6. If bg= a print e and stop

7. If bg a go to 11

8. f 4-- g

9. g k(g+e)

10. go to 5 I

11. 4--e g

12. g 4 k(g4)

13. go to 5

The beginning of atrace foi..1etermining log32 is:

a b c d e f g bg

3 0 1 .5 1.732

.5 .75 .75 2.2795

/
. .625 .625 1.9870

.

' .6875 2.1282

1og34 2 log(2) by 6.2,4(c)

.2620

1og36.= 1og32 + 1og33 by 6.2.4(i)

= 1.631D''

1

2 9 7

I

1

1



6.2 - 5

:, log38 = log32 + 1og34 - by 6.2.4(a)

.= 1.8930*

log39 2 16g33 by 6.2.4(c)

= 2

log310 = 1og32 + 1og35 by 6.2.4(a)

= 2.0960

Trial and ertur can be employed again to determine log35, log37,

and log310.

I

Even our small table of logs can be used for computation,

if our calculators and computers. are-nearby.

EXAMPtE 6.2.5

Determine 45

Solution: 1og345 = 5 log34 =,..3100

.3100
36 = 1,024.7096 so' 45 = 1424.7906

By diect calculation 45 = 1024.

dlearly 45 must bean integer. A little good mathematical

sense tells us that 45 must be 1A24 since powers of 4 must end in

4 or 6.

This example points out an important fact when calculating

with logarithms. No matter,how accurate your tables ate, you can.

only hope for a good approximation. Calculators and computers per-

form many functions bymeans of logarithms. This,is one reason why

AO'
11*

*
Notice that 1.968w9 = 3(.6563) since 8 23 so lOgy log32.

290
.
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.

.

even expensive and sophistithated m'achines-bave errors

.

.

EXAMPLE 6.2.6

.

,.

.

. .

.

1.0

k m.....

.

.

A

6.2 - 6:

Determine \)-T

,
Solution: .

/

.
i

.3r.-2--- 1i log3 v 8 = 7 log38 .2704

= 1.3459 /3'
2704 r

Jr--
By direct calculation v 8 j= 1.3459

,

, 1 I
At first g4ance EXAMPLES 6.2.5 amd 6.2.6 seem to be silly

li

.
.

ways to use a calculator for we can/, determine the values of 4
5

.

! /
.

andZr13' directly. These examples late designed to eXtlibit.notnot

only the propertie% of logarithms 4nd exponents but to nurture an li

'
appreciation for the historic-I sijghificance of logarithm$ as a

.i li
computationa l tool and to recognize the genius of their invention,,

!

.

1

. ....

C

I

Exercis6 Set 6.2

(1 - 10) Uieour table of(,/ogarithms base 3 to determine each
/ t

of the following to the Dearest Check your results by

.
direst calculation. .

r:- $

1) 1 ut 2) Ili-
.

3) 8 x 7 4) 9 x 6

. 5) 1-6 6) \6F5--'
,

7) 8)
1

5 (
.

299



9)

1

1
10)

. 12)

5 ./7-

5

*3-3\JT

2

5F-
e.

6.2 - 7

beach of the followitg to the negrest tenth. Check,lour-results by

' direct calculation.

n 11 . 12 --13 14' 15,

login t

..,
.

13) Alog31.2

15) log3.13

17) log3.0015'
4

14) log _31.4.-

16) 143.15'

18) 143.00012

19) Why are your,answers to (15 -18Y negative numbers?

20) Why is 0 not an acceptable base for logarithms?

21) Why is 1 not an acceptable base for logarithms.?

22) Why are negative numbers not acceptable bases for logarithms?

23) Is' the logarithm of a negative number negative? Why or why not.

24) ,If logbN = 1, .that relationdhip fs true between b and N?
.

25) Complete thetrace of 1og32. .

. O.

26) Write a program for your oWn,calculatift/-device for logba
that follows the verbal algorithm of this section.

i
27), Show that if' {n n2, n

1, 2' 3' )

..1 is a geometric sequence

I'
,

then flogbni, logbn,, rogbn3, ...1 is an arithmetic'se-k ,.

/1 quence where b > 0, b # 1.

*
You may wish to do exercis es 25 and 26 first and use your results.
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4
a it"

6,3, . 'Logarithms to Differe Bases',

:-

6..3 -

In Section 6.2 we deermi ed logbn by using .the relation-.
ti

,

ship batween'T6gs andexpollors'and trial and error. We now wish

.,to tonsider th; relatiOnship betwe44 logarithms of numbers, to dif- 41'
...

ferent base's.'

A

K
-.:

11

,

EXAMPLE 6.3.1
,
°.?Find,log52 to four decAral places,.

. 7 0,

Let 1og52 4 x
- 4

then .5x = 2 just 4S before.

Solution:' log(5x) = log'%2* taking the lag of bott
. ,

(

x log 5 = log-2 :

by 6.2.4 (c) 11

ice that thii is 11L.

x log 5
.division of.logi.log 2 -

...3010
. x .6990,- .4307

II

dr and 1og52 = ./4307

Also 5'407= 2

r -, .

i .
.

We use base 10 only because it is convenient, only a keystroke II

away. Any other base could also bp used.

I

Recall that if no base is specitied it,is assumed to be brSe 10,

Thus log2 means log102-
3 0 1,
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mg.

6.3 - 2.

EXAMPLE 6.32 - Using the log3n chart from' 6.2

Solution: l!t 1og52 = x

pet '5x = 2

x log35 = log32

log3?
,X

-

= .6310.
1.4650

and log52 =,.4307

.4307

These two examples illustrate the following theorem:

Theorem 6.3.3

loamy

Proof: let lOgay = x

11110r
then a?c 7 y

Logb = logby

logby

"g,ba

x logba

logby
x

logba

Notice that this proof follows exactly the same format as

EXAMPLES 6.3.1 and 6.3.2.
a

3 O,2

2
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. a )

6.3 -

Logarithms can be used to solve problems that Appear, to

the casual of;sAvet, to have no relation to logarithms.

EXAMPLE 6.3.4 How many digits are there in 249
?

Solution:
let 2

49
= 10x

log 2
49

= log 4.0x

49 log 2 = x log.10 =x

.t ..., ....44 14.7505 = x

% so
,;249 .:,.. 1014.7505:

114

and 2
49

10
14 - 101

4
.7505

< 10
15

10
14

has 15 digits

10
15,

has 16 digits

so 10
14.7505

has 15 digits

has 15 digits.

'By direct calculation 249 = 5.6295 X 1014 which has 15 digits

Notice that for this example it is essential to use base 10.

9

Exercise Set 6.3

(1 10) Determine each of the following to four decimal places.

Check your. answer by usingan exponential expression.

1,,) 1og254

3) log110.009

5) loglI6 .

7) logi 8

2) , 1og3150

Lo;40.416

6) logliy. 7

8) log n 1

303
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to

9) log 0310 10) log 79

(11 - 14) Dotormine . each of the following:

11) log4J2 12) logft.t

13) , loiarr 14) xx2

(15 - 20) Determine, how many digits are in each of the following

6.3 - 4

ti

numbers.

15) 420

. 17) 12719

19)
5790

(21 -.26) Determine the

.

1og381 4".4og264

logi.01,0,000
21):

16) 518

18)
25312

20) 6385

tr-

value of each of the following expressions:

22)

2 + log2(1og55)
23) 24)

5 ,log.0.

1-
25) 5, + 0

10;
- 2(rogE)0 + log .6

26) 6 +74°g72- 3 Log .001 - 1og77

(27 - 30) We wish to determine

0°27) Complete the following charts

1og216 +.1og21

1bg525 + 1og264

log1.2
5

log24J-27

log07 - log39P7

+ log of

a relationship between logab and

1og23 1og32

30,1

log57. log75

/1
10g210



3

28) Create 5 more log.b and -logb-A- charts of. your own.

29) Write a relationship between log a w
b_and logba.

aagl'e2o1 maul ICTd-r1TnT)

30)' Prove your relationship in (29), Ydu mar wart- to use

logab = x and logba = y and convert these log exprestions

IL.

J..

to exponential expressions.

31). Wtite a verbal algorithm td Compute ,logba assuming that

yourcomputing devide has a log key or log command. .

32) Writg, a protram for logba using your answeir to exercise, 31.

MIS

IMP

I.

1

'01

-0(

305,



6.4

k

Natural Logarithms and e

, 6.4 - 1

Tr this section we will again study an illusive number

that is the base for a specya1 kind of logarithth called'natural.

logaritAms.
/- .

EXAMPLE 6.4.1 Consider the following seqdence:

(1 + 1)1, (1 + i)2, (1 + , (1 + (14)k, ...

4o determine the first 10 terms of this sequence we can use the

following verbal algorithm:
it

-1. N4-1, display N' (N is counter, M is term)

2. Determine M = (r + )
N

'

display M.
N

3. N4T-Nli I

4. When N = 11..stop, otherwise go to step 2.

The following are programs for diis algbrithrn,

HP-33E

2

1 0 8
STO 9

1 15 RCL 1
+ 16 f x t y

1 10 RCL 1 17 GTO 03
4 STO +.1 11 f y 18 RCL 2,. , f

,5 RCL 1 12 S (term)
6 R/S counter) 13 RC 2

7 g. 1 x 14 ENTER

. TI 58
1

00
01
02
03
04
05

.06
07
08
09

110

0

$TO
01 ,/

.2nd Lbl
A
1 ;

SUM
. 01

RCL e

01
R/S (counter)

11
12
13
14

'154
r
18
19
20
21

1/x

RCL
01,

.-=

R/S (term)
RCL
02

RUN, RTN, store lb in R
2'R/S

...

22 -x>.ct
23 RCL
24 01
25 . INV 2nd ''

26 x = t
'27 A --

28 R/S (stops program)
29 RST
LRN, RST, store 10 in R2,
R/S

.

%-,

-----4/

\
.*.

31-4;
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TRS-80 .

10 N = 1
= (1 +

30 PRINT N,M
40 N N + 1

6.4 - 2

51:1 It. N= 11 GO TO 70
-;60 GO TO 20
70 END .

Load the program into your calculating device and f'll in the ,

following table. Find an to 4 decimal place$.,

n a
n

a
n

1 r/ 6

2 7

3 2.3704 ,
8

4 9

5 10 2.5937

Finding the 100th term of this sequence would take a long time

(more than 30 minutes) by this method. But we can find the

1

0100th term directly
*
by calculating (1 +

10
)
100

2.7046

Verify each of the following to 8 decimal places

10,000th term = 2.71826823

400,000th term =4.71828047

10\000.000th-term 2.7184).69

100,000,000th ter% =

500,000,0'06th term = 2.71828162

it seems, safe to assume that the sequence

.1 +4)2., + )4, (1 +

*
Notice that this sequence is neither arithmetic 'or geometric.
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6.4 - 3
) `

approaches 2.7182818+ when k increases witho ut found.
*

The

limit of this infinite sequence can be expressed as:

lim (1 + 1 n,
= 2.7182818+

n-**9

EXAMPLE 6.4-.2 ' Consider the fol owing series:

U1

1 1 1+
I

+ +T T 7T TT
+ . + +

The sequence of partial sum of this series begins:

$ 1

1 +.1 = 2

$3 = 1 421 + k = 2.5

To determine the-teims in the seqUence of partial sums of this

seres we can'use the following, verbal algorithm:

1. A-- 1, B Cdt 1, 'D 1 (A is counter, D-iS term)

2. Display 'A and D. 1

3 . A + 1, D 4--D + 1

4.. Display A and D.

5. B + 1

6. 4mpUte * B

7. Compute 1/C

8. Compute D4D + 1/C

9. AtA +J.

2.71828L8+ gpans.a number alittle\bigger than 2,7182818.
KA
Recall that,by,definition, 0! 7 i.

3 '3



la. Display A arid D.

,11. Go back to step .5.,

4

'12. When you have reacKed the

6.4 - 4

_

sum you want, stop.4-,

The following

HP 33E

are programs for this algorithm:

(R0 is counter, R3 is term)

1 13 STO.+ 3
STO 0 14 RCL 3
STO 1 15 R/S (term)
STO 2 16 GSB 24

02
.03

04
05 STO 3 17 1

06 R/S (counter) 18 STO + 0

07 R/S (term) 19 RCL O.

08 1 20 R/S (counter).

09 STO + 0 21 RCL 3
10 RCL 0 22 R/S (term) ,.

11 R/S .(counter) 23 GTO 16
12 1 24 1

TI 58 counter, R03 is term)

OQ 1 .

STO1
21
22.

03
R/S (term)

02 00 23 2nd Lbl

03 STO 24 B

04 dl 25 SBR
05 STO 26" A
06 02 27 1

07 STO 28 -(;UM.

08 03 , 29 DO

09 VS/(4gunter) 30 RCL
10 R/S (term) 31 00
11 1 32 R/S (counter)

SUM 33 RCL
00 34 03

14 RCL 35 R'S., (term)

15 00. 4. GTO
16
17

R/S (counter)
1

37
38

B
2nd IAA

ft,

18 SUM . 39 A
19 U3 . 40 1

20 RCL 41 SUM

3 j

25, STO + 1
26 RCL.1'
27 ISTO X 2
28 RCL 2
29 g /x
30 STO + 3
31 g, RTN
RUN, gRTN, f fix
R/S

4 04,
43. RCL
4'4 . .01

45
46 02

2td PRD

47 RCL
48 02
49 1/k,
50 SUM
51- 03
52 It SBR

'LRN, RST, R/S



'6.4 - 5

TRS-80 (for'lst 16 terms; A is the counter, D is the term)

10 DEFBL D '
20 A = 1:8 = 1: C = 1: D = 1
30 PRINT A-,-D "

40/, A = A + 1
50 D = fl+ 1
60 PRINT A, D.
70 B = 1

80 C = C * B
9O D = D + 1/C

100 A = A + 1
llu PRINT A,
120 IF A'= 16 TO 130
130 GO TO 60
140 END

$

,Load the program into your calculating device and fill in the

`following table.
k

Find Sri to 8 decimal places.

n. Sn

1

2

3

4

5

6

7

8

2.71666667

2.71825396' J

sn

0

10

11

12

13

14

15

16

2.7182843

2.71828183

4

It seems Safe to assume that the series ,

. *

UT
4+ + ... approaches 2.7182818+

when k increases withoutbound. This infinite sum can be expressed

as:
00

1

L._. riT
41.,s0

2.71'82818+

31
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6.4 -6

I

This number 2,718.2818+ looks like a very special ;lumber.
,

Indeed it is 1' It is the number e;. One of the many ways to

define is the °flowing:

' Definition 6.4.3

e = lim (1 + 1) n
nt

e = 2.71828n+.

e is kg irrational number so it has no dkact representatimi

as a decimal. e is alsoa transcendental number. This means

that e cannot be expressed as the root of a polynomial equation.
*

e is' probably called '.'e" because it represents a slecial.kind of

exponent (as you will see later) and because it was written as

"e" when it was first developed by the great mathematicians

Euler and Gauss. Another 'of Euler's important discoveries is

the remarkable equation involving five tmportant constants:---N

e + 1 =' 0

e is the base for natural logarithms which are usually wrii-

ten as in rather than loge.

Definition 6.4.4

x Qn y is equivalent y =.ex

t1.
Other transcendental numbers are IT, log 2, 2 . If this idea
intrigues,you refer to Numhers: Rational and Irrational'by Ivan
Niven, Volume 1, New Mathematical Library, the Mathematical As-
sociation of America

3 I 1
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Natural logarithms are, the "best" logarithms to use in

many applications of the calculus and in modern analysis. YOU

will see a lot more of the important and surprising constant,

e, in your future mathematical career.

Exercise Set 6.4 .

1) ' netermine how to display ,e on y9ur calculating device.

(2'- 7) Refer back to EXAMPLE 6.4.1.

2) .Find the 500th term of the sequence.

3) Find the
1

5000th term of the soquence. 1

4) Find the 109 term of the sequence.

5) Find the 1010 term of the sequence.

6) Why.is your answer to (5) "strange "?

.7) Write a few sentences to convince another student that
10
n'

lim (1 + e # 2A718281828.

(8 - 11) Load, your calculating device with the program of

EXAMPLE 6.4.1. How long does take your calculating dev1.4

to determine:

8) clhe 20th ter of 1the sequence'

9) the 50th term of the sequence

4,
Estimate hot long it would take your calculating device to

determine:

10) the 109 term of the sequence

11) the 10 1 0 _term of'the-sequence



6.4 - 8.

(12 - 15) Load your, culating device with thepilgram of

EYAMPLE 6.4.2. Find .-af-,1'nf the f7110wing. For calculators:

Clear the registers before each run-. Store the appr9priate

number in R2. For computers: Alter line 50.

12)
20 1

0 e"

13 )

E 151-
30 1

r . 4

1 1
14) Is 120 ET = 30

HT-'
Explain.

. 0AID

,15) Write a few sentences to convince another student tHat

"110

= e # 2.718281828.

A61.0

16) Determine a relationship between 4n10 and .ogio<sp.

17) Prove the relationship you developed in exercise 16.

(18 - 21) Decide whether0,th of the following is true or

taise. Give a reason to support your answer.

18) in x < log x for x > 0

19) in x - y

20) in XP = in, px

21) e
in e = 1

fraction that continues.

*
A good refere"nce is Continued
New Mathematicpl Library, the
1963.

t

Fractions by
Mathematical Association of America,

A

(22 - 26) Coptinued fractions
*
were studied by the great mathe-

maticians of the 17th and 18th century and are the focus of

ed fraction is amathematical research even today. A tontinu

D. C. Olds, Vol. 9,



Example:

act11a

T

1.

3
Z. +

Continued fra;tions an be infinite.
.

Exampre:
-1..

Are you ready? e

6.4 - 9

-I- I

v2 +

I + S

22) Verify the continued fraction representation for 24
w7.

*sr

a 3 n

4



w

(23 - 24) Approximate

23). I +
c:20-/-

. .2+ I

. c2+ I

by

(25 - 27) 'Approximate -e by

25) 1

+ 4
02 4-02

3+
4+4

L

I

24)

26).

0

6.4 - 10

I

62 4
.7 I

c2.4-``i

02-1- I

27) What is wrong with the following '!proci"?

e-2-

= 0

= -1

=

= 1
=e0

0

2 # 0 so" it.= 0 or I=

315
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6.5 Natural Growth and Decay, and Applications

4 4e
6 .

The name "natural" is appropriate for natural logarithms

b' ause of their appearance in various laws oi growth and decay.

Radio -c ve m eriels decay At a rate proportional to th6

r4`amount of materia resent. This is characterized by the equa-

/ tion: 4

410.
y = c.ekt

y it-the amount o material rema-i.;Thg at time t'

c is the amount of material present at time zero

k depends on thetparticular substances and the units being

'used.

*

EXAMPLE 6.5.1 (Radioactive Decay) )

A physicist his 20 grams of riOlioactive radium.

The half-life of radium is 1600 years.
*

How mtichlof the

radium will be present after (a) 2000 years

(b) t years

(c)' How long will it take

for 2 of the 20 grams of radiUm to disappear?

**
A given amount of radium will be hialf,gone after 1600 years.



(a) We must, first determine k:

10 = 20ek(1600)

in 10 = 20e1600k

in 10= In 26+ 1600k In e

in 10 = in 20 + 1600k

in 10 -in 20 y
1600

-.0004 = k

y 20e-' 0004(2000)-;

y 8.9866

There will be approximately 8.98t4?grams left- after

6.5 - 2 to

"Ir

J11

.2000 years.

(b) y = 20e-: 0004t

'(c) When 2.grams disappear there will be 18 grams left.

18 ; 20e-.0004t.

in 18 ; in (20e- 0004t)

in 18 ; in 20 +'(-.000401n e

In 18 ; In 20 - .0004t

- In 20 -

= t
-.0004

263.4013 ; t

Two grams will disappear in approximately 263 years.

3
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'Many large populations, for example people and bacteria,--

under,/ eal co itionsgrow at a rate proportional to.ehe size.

.of the population etent. This is also characterized by the

equation:
y= c.e

kt

y is, the size of the population at time t

is the size of the population at time zero (your
.loo

.

reference point)

k depends on the particular population being con-

sidered and the units being used.

EXAMPLE 6.5.2 (Population Growth)

The numbtr of bacteria at 9 A.M. is estimated to

be 1000. At noon the bacteria count is estimaepd tole

8500. (a) How many bacteria are there after t hours?

-(b) When will there by pproximately 20,000

bacteria,

.,(a) We first need to find k.

8500 = l000ek(3)

in: 8500' = In 1000 + 3k In e

n 8500 = In 1000 + 3k

In 8500 - in 1000 k

..7134 = k

a

c



ot

vb

1

.

.6.'5 -

y = 1000e'7134t
J

There will be approximately 1000e .7134t

bacteria after hours.

20,000 = 1 00e
.7134t

20 -1
'e.7134t

in 20 '.7134t in e

in 20
.7134 '

4.1992 = t

4 hrs. 12 min. a t N.;

.4

At approximately 1:12 PM there will be 20,000 bacteria.

EXAMPLE` 6.5.3 (Bank Interest)

As seen in Chapter 2, if a bank gives interest at a

rate compounded annually, the amount in an account Is

given by the formula
.

A=P (1 +

A is the total in
/

the account after n years

ot.

P is the initial dep,Asit.

i-is the rate of fnterest expressed as a Aecimal. 4
A

,(a) Find the total amount Of $1000 invested at a rate

of 6% for 10 years. A.= $1000. (1 + .406)10

= $179n.85

If the bank gave compound interest the formula; would be

A P (1 + 1)ncl

:319
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where as is the riumber of times the interest is

compounded per year.

The expression (1 + i) nq should look familiar. i is

fiXed and small. q and nq'are getting very large. Recall
/ 4

that lim (1 + 1) n = e. So, itbanks compouiged their interest

without restriction '('continuously) the maximum total amount

would be determined by

A = P.ert

r is,the yearlyjate in decimal form

A,is the total,accumulation after t years

P is the principal (amountsinvested).

Continuously compounded, interest is a "natural" growth.

Relation 6.5.4

Natural growth acid decay at a rate proportional to

the number presenf is\chtracterized by the relation:

-;i

y c.e
kt

*

EXAMPLE 6.5:5 (Rocket Launching )

The velocity gained by a launch vehicle when its

propellant is burned to depletion is expresse4 br the

Refer to page 6.5
lc*

This information
nautics and Space
tics pp. 72=-74,

- 1 for explanAion of the variables.

is provided National

/3 r

*, jj
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4

equation/ v = in.R. Th$A0s.unch velocity gaiqed during
.

the burn is v, the exhaust velocity is c and R .is-

the mass ratio. The mass ratio R is definiV by

takeoff wei ht-
burnout weight This ratio applies to either the

entire launch vehicle or jusL34ngle stage.
0

The taki

off weight consists of propellant (fuel), F, stricture:,.

S, and payload, P. Thus the taisratib is

F + S + P
+ pR

At burnout all the fuel hasbeen consumed so F F 0. It

has been found that the, weight of fuel cannot be more than

about 10 times the weight Of the structure.

(a) What is, the laFgest possible value for R?

10S + S + P 11S + P 11S + 11P - 10P
S +1) S + P S + PR

10Pall
If R = 11 then P = 0 so the rocket would have no room

for a imylgad:

(b) If.the highest energy propellant

off from Earth ha an

per second, determine

R a 10. V=

available for take-:

average exhaust Velocii'y'of 9,600 feet

the velocity of a launch vehicle with.,

9,600 in 10

22,106.82 feet per second.



6.5

The total launch velocity of a vehicle ;oust

0*
about 30,000 feet per second so this vehicle cannot

fly. Even if R = li'the launch velocity would not

be 36,000 feet per second.
v

(c) What must the exhaust velocity be so that the

Vehicle in (b) could be placed into orbit?

p0,000 = c in 10
1711,

13,028.8345 ft/sec = c

The solution to this problem is staging. As soon as

the propellant in the first stage has been burned, the

S

1,stage ids jettisoned and permitted to fall into the ocean

so that the vehicle Is freed of ceadweight. The second

and subsequnt stages become *more effective and orbit is

possible.

Exercise Set 6.5 ;

1)* Apsume that the` number of bacteria B present after t

minutes-is given by the formula. N = 200 e'27t.

a)' How many bacteria are present tfAr hour?

b) How many bacteria are present after 2 hours?

c) How long-wili it take to have 15,000 bacteria?

2) The half-li-fe of radioactive bismuth is 5 days. If a

scientist has 15 grants,

(a) How(MUch of the bismuth will disappear after 12 days?

(b) How long will it take for 6 grams to disappear?

322
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3) 'One gram of radioactive lead is*made. At the end of

two hours .04 gram remains. What is the half-life of

radioactive lead?

4) In a certain culture bacteria grow at a rate proportional
. 7

to the number present. At a certain instant the number -

of bacteria present is 1000. The number present 10 hours

later is 7000. How long does it take the population to

double?

5) Smart Sidney deposits $5000 in a bank-that continuously

compounds its 5% annual interest. How Much doe's Sidney

have after 7 years?

Sidney deposited $5000 as described_in exercise 5. Susie

4eposited.$5000 at a bank that compounded its 5.57. interest

monthly. If they both intend to leave their fey in their

respective banks for 5 years, who made the better invest-
N4
ment?

7) The population of Buffalo, New York wase632,759 in 1960

and 462,768 in 1970. Assuming natural 'growth ", predict

the population of Buffalo in 1980:-

8) In 19601-the population°{f/Atianta, Georgia was 487,000.

In 1970 the population was 497,000. Assuming natural

growth, when will the population be 1,000:000?.

9) The world's population doubles in about 33 years. In 1970

'tM world population was about 3,000,000,000. Assuming

normal growth,, what is a reasonable projection for the

world's population in 2000?

1 323
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In solution, sugar decomposes At a rate propOrtional

to the amount still undissolved.

(a) Express this relation asan exponential equation;

(b) If 30 lbs. of sugar reduces to 11 lbs. in four

hours, when will 80% of the sugiribe decomposed?

11) Many'satellitei have radioisotope power supplies. The

power output in watts of such a supply is given by the

equation-P = 50 e-t/250 where t is the time in days.

(a) How much power will be avaiiable.atthe end of 1 year?

(b) What is th9 half -life of the power supply?

(c) If the equipment aboard 'the satellite requires 10

watts offpowir to bperate properly, what is the

operational life of the satellite?_

12) 711 approximate rule for atmospheric pressure at altitudes

less-than 5D. miles is that standard atmospheric pressure,
411)

14.7 pounds per square inch, is halved for each 3.25 miles

of vertical ascent.

(a) Write an exponential equation to express,, this rule.

(b) Determine the atmospheric pressure at 20 miles.

(c) Find the altitude at which the pressure is 257 of

standard atmospheric pressure.

(d) What altitude is just abeven percent of the atmos-

phere? (PreSsurd and density are proportioriAl; the

desired altitude is the point at which the pressure

is 1% of standard atmospheric pressure.)

C.1
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6.6 Exponential and Logarithmic Equation

Our -knowledge of exponents and logs allows us to solve

many very sophisticated (and complicated-looking) equations.

An equation in which the unknowri appears in an exponent

is called an exponential equation. An equation in }.rich there

is the logarithm of an expression involving an unknown is cal-

led a logarithmic equation.

.EXAMPLE 6.6,1 Solve for x and check:

5 ' 3
2x
t
1
= 11

1-x

2x+1.
)log (5,. log (111-x)

log 5 + (2A+1) log 3 = (l-x) log 11

log 5 + 2x log 3 log 3 "=.1og\11 - x log

2x fog 3 log 11 a log 11 - log 51- log 3

x (2 log 3 + 11) = login - log 5 - log 3

to s 11 - log 5 - log 3
x log 3-1- log_11

x = -.0675 (to 4cietiinal places)

ch%Eh: .5 32(-.0675, +
,111

(-.0675)

5 -A'
8650 11

1.0675

12.9324 12.9326

This problem could also be easily done using natural

logs. Logs to any base could be used but log and in are

easily accessible on calculating machines.

325
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EXAMPLE 6.6-.2 Solve for x and check:

xlbg x 10,000 x3

log (xlog x) = log (10,000 x3)

log x log x =log 10,000 + 3 log x

(log x) 2= 4 x

log x - 4 = 0'dog )
2

3
41,

Check:

(log x-4)(log x+1) = 0

-r

log x 4 0 or log xt1 = 0

log x =-4 . log x = -1

.1x = 10,000

10 000log 10,000,

4,10,0004

10,000 (10,0003)

10,0004

10,000 (.1)
3

.1
-1

10,000 (.001)

-.4' 10 10

Clearly log it the only reasonable choice here.

Y.

EXAMPLE 6.6:3 . Solve for x and check:

e2x
2ex + 1 0

(ex_1)(ex_1)

ex _1 = 0

ex = 1"

An ex n id 1

:3 2 G

0

4



Check:
e2(6) - 2e° + 1

e° - 2(1)+1

1 2 +.1

0

EXAMPLE 6.6.4 Solve for and check

In. In (x + 1) = .7

6.6.- i

e - e

..

inin (x+1) .7

:in N ,
Since e = N, In (x.+1)= e'.7' .

.1, x+i, . ee

x +1 =, ee.
7 --,

Ii
- x+1 = 7.4914

x - 6.4914
, ..

A/
heck:

(6.414 + 1)

in in (7.4194)
2.0138

.7
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EXAMPLE :6.6.5

".

. 'Crieck:

log'' N13;77 = 1.33

logs x +4

5 - = 5

TSc--F 16.1889

,3x,+ 4 = 262.0814 Ar_

P

X = 86.0271

log' J306.0271) + 4

log' 16.1889
.-,

th 16,1§§9
,tri 5

1.73

EXAMPLE 6.6.6

x = j2, + + + +

4.73

6.6 - 4

A first attempt at determining a more."ordinary" form for

x might involve evaluating the finite expression

2

-4IT:-kTFB

x = 1.9998

Since x > 1.9998 it seems reasonable to expect x A 2.

Butithis is clearly not a good enough procedure.

I



ti

x = j2 + 1,12 + 2+

So x 7-- 2 -1IC7E *

x2= 2 + x

x2 x 0 2 -4
- 2)(x + -1) =0

x 0 x + 1 = 0
I

x = 2 x -1

xs.> 0 so x # -1

- 5

sb indeed x = 2. 4

*C U
n

This example' is not related logarithms and only emotely

related to exponents, but it is a eresting ;kind of m hemaiica
1

iexpressidh. The technique s worth repembering, especially if oU
-:-

want someday tb be a star in a

terciie Set 6.6

( 1 4Y' Solve fox n.

1) = am-1

3) x,= login

mach contest.

2)
k

x = at
ch

I

4) x` = 3 +-Li n

(5 -'1.8) -Solve for-x to four'decimal.-piOes..Checklour

answers.

57x 75x+1 . *3x+2 5x-2

7) log log (x4-11 = 8) in In (x-3) = -1.2

s. 329

,



,

9) log5 (x+1) + log5 (x+2)

10) 1og3 043> - log3x = 2

11)
£n (7x -12)in

13) Jn x = 1.5

1p) e
-2x

- 3e
-x

+ 2 = 0

in (in x) = 1.2

(19 - 20) Solve, for x:

19) x = 113 + j3 + T57777

-1

6.6 = 6

= 1

12) log (5x-6) 2
log x

14) slog x =*2

16)
2x ,x

e - e = 6

18) log (log x) .= -.3

20) x =J5 + J5 + 5 + ...-

(21 - 24) A technique similar to that employed iv EXAMPLE 6.6.6

can be used to evaluate infinite continued fractions.
*

EXAMPLE x = 1 + 1

x - 1 = 1

T- 1

2 + 1
+ .

. )

x = I + 1

2 + x-1

1x = 1 +
iTr-

x(x+1) = x+I ± 1

x2 + x = x+ 2-

lc
2 =.2

.x = UL

Refer to 6.4 exercises 21 25.

33o
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.

4

.4

.1

'Solve for x:

21) ii. 2+ 1 22) 1

6.6

.

- 7

x 4+ 1
xt

6+ 1

+ 1 6+ 1

J
74

ti

..,

Lir

4+ %

+ 1_
6 -i1-7 -.

..... ar

4

/

-...

. .,

g3i
*.



c

.7.

. 6.7 - 1

6.10 Graphs of Exponential. and Logarithmic Functions

In this section we will carefully consider the graphs

.of exponential and logarithmic functions. These graphs con-,

ley important and. characteristic information about these two

44lasses of functions.

EXAMPLE 6:7:1
(

Graph the following functions:
4

f(x) = 112x

`f(x) = 1.4x

f(x) = 1.7x

. ,
1) From.the graphs of each of these functions determine the

I b* (a) domain

(b) range

(04' f(0)

(d) f(1)

(e) the character of .f(x)4as

. (f), the-character of f(x) as x--+ + oo

f(x) = 2x

(4( 3.5X

f( ) = 10x*

(g) the continuity or gscontiputty of f(x)

(h) the character of f(x) as x\increases

x
Make a list of generalizations about f(x) = b when b >10.

s'

332
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s.

t4

6.7-3

Solution: .Using the techniques of graphing developed in -
T -

section 5.1 we can program our calCulating device to compute
, .....

or4ered pairs ior,each of these.functions. (Use d < .5). We

obtain the pieceding graph.4Y

1

ti

00'
.

,. 1.4-x .ix.... .

ex

.

3.5x
.
_

10x

-a all reels all reals all r.eals' all Ireals all reels all reals :

b.'s el [x 1 , x C3.1{xlx>0}fx .. ,{x,x>01cxixy0ifYix...1

/10
t

c.i : . 1 1 - . 1
-

. 1 1 , 1

cf , 1. 2
,...

1.4 I.7 -2 e 3.5 10

e li(x)--> 0 f (x) -+.0 f (x) -t. 0 - f (x)-t0 f (X) -.., 0 f(x)->0 f (x)--> 0

f f (x)-* gpv f (x) -9, cNi, f (x) -4 ..... f (.,x)--t...0 f (x) -...DE/ f(x) --,?.... f (x)--* c.0

g continuous continuous continuous continuous continuous continuous continuous

111 increases
.

increases

,

increases
i

increases. increases increases
-L

increases
.

Z. The class of functions f(x) r bx b >1 can be chafacterited

as follows:

(a) The domain is all real nuelaber'e

(b) The range is/ail positive real numbers

(c) f(0) =1. The graph passes through the point (0,1)

(d). .f-1(b) = 1. The graph ppsses through' the point (1,b)

(e) lim, f(x) = 0 (,

(f) lim f(x) 4- 00
440

ft

(g) They are continuous throughout their dpmain

(h) As x increases, f(x) increases
*

*
In calculus, this characteristic.is'called monotonic,increasing.

334



6.7 - 4

kyWe have been able to compile an impressi e list. Many of

these statements will not be proved until ou study the

Calculus. Each statement is true.

EXAMPLE 6.7.2

Graph ,the following functions

f(x) = iog19x

f(x) 1°g1 4x

f(x) =:/og1.7x

. f(x) = log2x

f(x) = in x

f(x) = log3x

=Mr,

2

1) From the graphs of these functions determine the:

a) domain,

b) range

c) f
-1

(0)

d) f
-1(1)

*
e) the character of f(x) as x---0+

f) the charatter of f(x) as

g) ',the continuity'-or di'scOntinuity of f(x)'

h) the charactL: of f(x) as ,x increases

i) the inverse of f(x) (denoted f-1(x))

2) Make a list of generalizations about f(x)= logbx,.

when b 1.

x-40+ means as x approaches zero from th, positive direction.
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1.

logi 2x
1.4x

x > Olifx x> 01

- (
all reels all reals

6:7 -6

I

ik kx >01 Ix I x>0?

re4as all reals. all reals all reals

1 1 1 1 1.

1.2 1.4 1.7 2 e. 3,

f(x) -- - f(x)-+- cos f(x) 002 f(x)-, - f(x)-t-. f(x)

f (x) f(x)--4s.a= f(x) --moo

continuous continuous continuous continuous 11 continuous continuous

.increases increases

1.2x 1.4x

increases increases

2x
e

indreases increases

e
x

3x

2. The class 'of functions f(x) = logbx b >1 can, be

characterized as follows:

ha) The domain is all positive real numbers

(b) The range is all real numbers

(c) f
-1

(0) = 1. The graph passes through the point (1,0)

(d) f
-1

(1) = b. The graph plasses through the point (b,l)

1

10

f (x)

f (x) -+

continu

increas

lox

(e) lim f(x) = -oo

(f) lim f(x) = + oo

(g) They are continuous throughout their domain

(h) As x increases, f(x) increases.- f(x) is monobonic

increasing.

(i)
*

f
-1

(logbx) = b
x

Again we have been able to compile an impressive-list of

statements. Many of these stat?meritz. will not 4e proved until

the Calculus. Each statement is true.

*
One easy way tg tell inverses of functions on a graph is to re-,
flect the graph along the ling f(x) = x.

a.

3 3
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6.7 - 8

Exercise Set 6.7

(1 - 5) ° Consider the graphs in EXAMPLES 6.7.1 and 6.7.2.

Answer each of the following with > , < , = or none of these.

1) If 1 < a < ,b, x > 0 then ax

2) If 1 < a < b,- x.> 0 thIn log
a
x

bx

logbx

3) If ,a, x > 1 then'ax log.sx

4) If 0 < x < y then, logbx logby

5) If 0 < x < y then bx by

(6 - 8) Complete each of the following with <* , > or u .

6) ,sinh x + cost x e
x

7) cosh2 x - sinh2 x

8) cosh2 2
x + sinh x 1

9) graph f(x) = sinh, g(x) 7 cosh and h(x) = ex on the

same axis in the interval [ -,3, +3] . What relationship

holds among these functions when .x > 0?

(10 - 13) Consider the class of functions f(x) where

0 < b < 1. Some members of this class are:

f(x) = .5x

f(x) = -.01x

f(x)

f(x) =
2x

*
The shale of this graph; although it it:45A like a parabola, is
called a catenary. It is not a parabola because it 1,s not a
polynomial.

.
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6.7 - 9.

10) Graph each of tihese functions and determine

a) domain

b) range

c) f(0)
4

d) f(1)

e) the character of f f(x)

f) the character of f,(x)

g) the continuity or discontinuity of f(x)

h) f
.1

(x)

i) the character of f(x) as x increases.

11) Make a list of generalizations about f(x) = bx when 0 < b < 1.

12), Compare your list from exercise 11 to the list of EXAMPLE 6.7.1.

Make a list of generalizations about f(x) = bx when b > 0,

b # 1 .
A

4 13) Graph f(x) = bx when b = 1. Does this fit your generaliia-

dons of exerc4.sell? Why is 1 not considered as a base for

an exponential function?

(14 - 17) Consider the class of functions f(x) = log where

0 < b < 1. Some members of this class are:

f (x)

f

f =

log.5x

log.01x

logix

3

f(x) 1 A2x

7
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14) Graph each of these functions

a)

b)

c)

d)

e)

f)

g)

h)

i)

domain

range

f-1(0)

f
-1

(1)

2

6.7 - 10

and determine

.the character of f(X) as

the character of f(x) as x --of+ c.c)

the continuity or
-1

f (x)

the character of

discontinuity of f(x).

f(x) as x increases.

15) Make a list of generalizations about f(x) = logbx when

0 <b < 1.

.16) Compare. ybur list from exercise 14 to the list of EXAMPLE

6.7.2. Make a list of generalizations about f(x) logbx

when b > 0, b 0 1.

17) Graph f(x) = logbx, when b- = 1: Does this ,fit your generali-
.

zations of exercise 15? Why. is 1 not considered-as .fie

for a logarithmic function?

(18 - 19) Consider the class of functions ftx) = bx where

b t O. One member of this class is f(x) = (-.5)x.

18) graph f(x): = (-.5)x

19) What outstanding characteristiCs does this funet,ion

(20 - 21) Consider the functiolp:

k(x), = log2x

Jt(x) = log 2x

41.1(x) = 2 log x

n(x)

311
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9

.20) 'Make a skeich of each of these functions.

.21) Which.of.th'ese functions are inverses?

22t On the same Set of axes, graph f(x) = L nIxi and

g(x) = iLn .- Compare these two functions.

23) The functio f(x) = xx,.hassmany.interesting properties.

a) Graph f(x) = xX. when x > b..

b) Graphl(x) = xx when x .1

c) Based on your answers to a). and b), )what can

you say about 00?

4
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Logarithmic Scaled

6.8 - 1

In this section we will consider several uses for

logarithmic scales.
I

:dr.

.

Ofdinary graphd are made on ppe:f that is divided into
4_,...,

. . units by uniform scale. Often it is more`. convenient, more ---

Aiceveatng and more practica06 use another kind of scale call
...

,

.

a logarithmic scale. 'On a logarithmic' scale the origip repre-
,

dents the value ofAlhe variable and the other convenient values-
, *
of the variable are marked at distances from tie origin corre-

.sponding to the logarithms:

EXAMPLE 6.BA.

I

41W

Conttruct a logarithmic scale.

Is ' 2" . 1-6

ef
ILAL15-Libeii,8 tic

This scale is deermined4by the log oi\gach of the numbers.

Since ldgarithms can be determined for any appropriate base,

log scares can be made to correpond to any different choice

of unit length. -ThXfscale is maLle'from a unit of owe inch and
\_.1

base 2.
4'

ipg21,= 0 inch

log22 = 147-A
log 3 =

log Pt =

1og25 = 40g.

inch

6 inches

'n6144,

inches

343
4,10°

l'og26 = 2:6.inches

log27 = 2.8-----*2.8 4nthes

aog28 = infDes

logi9 =

log210 inches



te

6.8 - 2

Before the wide availability of calculators and com--,

puters many involved calculations were computed by a device
r

called a slide r41p. 'A slide rule uses the principles of

logarithms and

constructed by

Multiplication

log xy = log x

the sum-of the

EXAMPLE

logarithmic scales. A simple slide rule can be

making two logarZthmic scales of the samAi.base.:

is carriediout by the property that

+ log y. The sum oft logarithms is given by

corresponding distances on the.scale.

6.8.2 I
Multiply 2 x3 on:logarithmic scales.

1 t
s

1 P.7.8

IL tIt7/6...
I I

log.2 = AB

log 3 = CD

log 2 + log 3 =4AB + CD = AE thus 2fx 3 = 6.

-ow
Just as for linear scales, there j.s graph paper haying*

logarithmic scale's. If both scaley are logarithmic it is called

full logarithmic paper. Ifone scale is logariththic and'one is

linear it is called semilogarithmic paper, The principal ad-
.,

vantage of I6garithmic'or semilog&-ithmic graphs is that certain

functions have much simpler graphs on these kinds of paper than
.

on linear scales. Because legs are only defined on positive

=numbers at most two_qua4Tts, rather than'four quadrants are

necessary.

344
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EXAMgLE 6.13.3

Graph x
3y2 4

A tablebf values is:

6.8 - 3

dr,

on full logarithmic paper.

x 1 2 3 .4 5 6 -P"-7 8 9 10'

y
,

2
._

.7071.385 .250 .179 .136' ".108 .098 .074 .063

1.0

S:0

ca

6RAPIA

H

a -£

345
36 4° Sb X)11-



I

This graiih.,is a'straight vine because

3 2logb(x y ).= logb4' becomes

,3 lOgbx.+ 2:logby

, 6.8 - 4

logb4 which-is a linear

equation in logbx and lfgby.

FKAITr E 6.8.4

Gr'aph y = 3x

logby = x(logb3)"

Since lo

use a log scale

A.
table of values,

9n semilogarithmic paper.

3 is a constant it is convenient to

r y and a linear scale for x. A

x 0 1 2.1S 3 4 5 6

y 1 3 9 27 81 243 729

346





6.8-6

Exercise Set for 6.8

(1 - 10) Build a slide ruleiiiihg.semilog graph phoer and

use it to compute each of the following:

2 x 8 2)

5.3 x 6 4)'

2.7 x r715 4)

(5)2 8)

(1.8) 3 10)

3,x6

4`.2 x 3

5.1 x 2.3

(7)2

C.249)3

(11 - 14) Develop a way to divide on a slide rule. Use

yqur "homemadeu,slide rule to determine:

11) '50 ; 2 12) 4`3,18

13) 3.6 4 1.2 14) 4.8 = 1.6

(15 - 18) Graph each of the followingion full log paper.

15) xy = 3- xy3 = 4

17) Xy2 = 1.7 18) x2y3= 3.1

(19.- 22) Graph .each of the following on Semi-log paper.

(19) y = 1,7x

(21) y r 23x

20) y = 2.5x

22)- :y
.41g

(23- 28) Identify the Acales.dn-which each of -the foaming

would be a straight line.

23) y = x3

25) 'x3 = yi'

72x

24)
y2

= x3

26) y = 5x3

28) y = 2x

343
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6. Chapter 6 Test

(1-2) Evaluate 4 4 decimal places:

5.17711) 2) 1og35

- 3) Determine the exact value of 31 8
.

4) Determine the value of

16 .

log..8 75 7 logirf
log416 - log3 91T3

Test 6.9 - 1

1 n
5) Determine the exact value of. lim(1 + ) .

6) Solve for n: S = am-1

(7-8) Solve for x to 4 decimal places:

5x +2 3x-2

1.

8) log In (x-3) = -.2

(9-10) Identify the scales on which each of the following. would

be a straight line.

10) y = 2k9) y = x
2

11) Assume that it is.known that the utimber of bacteria, N,

present after t minutes is given by

N = 1000e0.25t

a) How many bacteria are present after one-half hour?

b) How long will it take _o have 50,000 bacteria?

1

I
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<12-15) Compete each Of the following:

Test 6.9 - 2

12) The domain of the function f(x) = log
.1
x is

13) If f(x) = logbx then f-1(1) =

14) If f(x) = logbxthen f-1(x) =

15) If f(x) = 1.3x then lim f(x) =

(16-20) Decide whether each of the following is true or false.

16) in xi) = in p x

17.) 1.01°g x = x

18) The natural log of a negative number is a negative

number.

19) .If 0< y C x and b> 1 then bY4 bx.

20) Ln ! x i =.J x I

350
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7.1 - 1.,

CHAPTER 7. TRIGONOMETRIC 'FUNCTIONS

In this chapter we will discuss some familiar ideas in

runissetrrngs and some new ideas in familiar settings. In parti-

culaewe will study the amazing relationships between trigono-

metric functions and complex numbers.

7.1 'Circular Functions A

/P

'We wish to create a function that associates thifreal numbers

with the points on a circle. We will call this function, C, for

circular. The damain of C is all real numbers and the range of

C is the points on a circle. For easy reference lets locate our

circle on the coordinate plane having center (0,0) and radius 1.

-1 p L
C:

all real numbers

a

To hilve a place to-start let C(1)-= (1,0). The other functional

values of C .tan be determined by "wrapping" the number line around

the unit--eiNce. The circumference of,the unit circle is 2

so some functional values of Care easy tp 'determine.

c( n /2) = (0

C(?-) (-1,0)

'c(-21:) (0,-1)

11. ) = (0,1)

351



7.1 - 2

One interesting prOperty, of C ig already apparent.

C(0) = C(2 Ili) = C(-271N ) -=C(41?" ) = C(-4 ....

C,is clearly not a 1 - 1 function. Infinitely many real numbers

are associated with the same point on the unit circle.

C(t + 2 H' ) = C(t) for any teal number t.

Definition 7.1,1 A function which has the property that it re-

peats in value at regular intervals is called a circular function

(or periodic function orWrapping function).

Our function C repeats at the regular interval 2U so it is

said to have period 2ii . Another interesting property of C

that since it is not 1 - 1, it Cahoot have an ipverse.

Let us determine more of the functional values of C. Our know-

ledge of the circle and analytic geometry can be brought to bear, in

our 'analysis.

EXAMPLE ?.1.2 Whattiis C, *)?

Solution: C(0) = (1,0)
ry

C(4) 7 (0,1)

C( ) = ?

352



so

=,$*, y) where

$4.1agonal is 1

x2 + y2 = 1

x 2 + x 2
= 1

2x2 = 1

x= 7
or

x and y are the

n a
=thus..C(4,) = -7, .q) (t7071,' .7071).

7.1 - 3

sides of a square

4I I It-
. .. (2 ) so s is 6 of the.way around the circle

1
starting at.(1,0) so - 6(360

o
) = 60° and x = .5,

353
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y 7 .5 in so

#

EXAMPLE.7.1:4

= (.5, .8660) ,

What is C(1)?

Solution: = .7854 < 1 < 1.0472
U-

7,1-

( + ) = kg = .9163 too small

7ig' 151-
1/2(2--4+ 3) = 1/2( = .9817-;otoo small

15?-
) k(3111) 311/1. 1.0145 'too big

( 48 4- 3- 48 '96

415t.i. 311i; 1,(61fi'\ 61t-
9981 close enough.

% -4$ 96' -2' 96 192
_ -

.9981 = (.1589) 2ffr so 1 is apprioximatity .1589 of the

way around the circle starting at (1,0) so 0- = .1589(4160°Y

57o

60)

x =. cos 57°,-y = sin 57° so C(1) = (.5446, a387)-

354
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7.1w- 5

ao.

4

A *ter approximation of C(1) is (.5403, .8415). -Can you tell

why? Pause to th,ink-for-a.minute. before you continue reading.

.We have really been discussing the familiar concept of radians.

Thus we can make. the following. reasonable definition of C..

Definition 7.1.5 A

Let t be a real number and C a circular function of period

2 ir then

C(t) = (x, y)-where

x = cos t, y =*sin t aiid t is*in 'radian measure. ,

EXAMPLE 7.1.6

(a) Determine C(2).

C(2) = (-.4161, .9005

(b) Determine all tso that C(t) -
111,

(.8660, .5)

Cos-
1

(.8660) = 0.5236

r sin-1 (.5), = 0.5236,

Thus t = .5236 + k 211r. where k is an integer.

Notice that .5236, radians

t

*
The symbol 7 means equivalent.

o
30

*

355'
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(c) Determine all t so that C(t) = (-.8660, .5)

Cos-
1

(-.8660) = 2.6179

Sip-
1

(.5) . = .5236

2.6179 # .5236 What could be wrong?

.

Recall that the Cos
-1

(x) and Slu (x) functions dear only

-

.with principal values of cos
-1

(x) and sin (x).relations.

3 5 G
.00



)4,

-.9

. now

I.
Jr, 7.1 - 7,

2
3

11' for t on the "first wrap"

yet .3236 < but fir< -2.6179 < .
Ii
ti

Recall-that sin =sin (180 - t) (in degrees)

so sib Cr =,sin e)(in radians)

so sin (.5236) =/sin (2.6179)
s

and t = 2.6179-+ k2fR" where k is an integer.

Exerciseet 7.1

(1:- 6 For each of-the.following. determine two eldments in the

A
range of C that are qual.to the given point7-where C is a circul r

function of period 2 r
4

Example:

°Tr C(7)

3) ;C(5 t)

*C(3) = C(2 11 + 3) =,130(3 - 016'

C (7.3573). ;

2)

4)

6)

C(5)

C.(3i. )

C(-1.5826) :41

7 , 12) , For each of the followiqg determine two elements in

the domain of C * where C
*.is

a circular function with period 4.. )

*

- 9) : 0/6)

11) )C*(e)

8) C*(-3.7) .
lo) Cie( iri)

12) C*(-e;)

4k
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41.

a-

711 - 8

(13 - 20) , For each of the following let C be a circular function

from the real numbers to the-unit circle with C(0) = (1,0).

Determine:

lr13) C( ) 14) 519.4 )

15) C.(-11) 16) C(-1)

17) C(5) 18) C(10)

19) C(i) 20) C(e)

(21 - 26) For each of the following.determirie all t so that

C(t) is the indicated - ordered pair. .C:1?=-0- unit circle such

that C(0):= (1,0). Express t 'in radians and degrees.

21)

23)

25)

such

(.7071,' .7071 -) 22) (.5, .866p)

( LY5/3, -2/3) 24) /3, in/3)

(-.6, -.8) 26) -.4, -.965)

) In .each 'of the following; P is a periodic function
. -

P(05° = (x,0) where x > 0.

) Find P(0)

b) - Determine-.%0,the period of each function P.,
,

. .

,
. .

° 27) P(.6435) = (3,4) 28) PO "
II

.

) = (-3,0)
_

20d(-2.8176)= (-1, -2.9782) 30), P(2:1112) = (5, T3)

/
0 ti



7.2 - 1

7.2 Polar Coordinates

You are.flimiliar with the idea of associating points in the

- plane- with ordered pairs of real numbers. The rectangular or

Euclidean or Cartegian plane is a,.grid in which the ordered pair

associated with a point is determined by it4 directed distance,

vertically and horizontally, from two perpendicular lines. Thus

the ordered pair Cx,y).represents a point, P, that is x distance

vertically and y-dstance horizontally from these lines.

- 6

- P
1.04%1 Et.

Another System of locating P is by measuring its distance,

---
from the origin and the angle that the ray OP makes with the

positive direction of the vertical axis.

35)



7.2 -2

The segment OP is designed by (rho, pronounced r5)

and the angle & (theta, pronounced tta/ ta). Thus P, in polar

coordinates, is represented as ( ). The origin, 0 is called

the pole. The distance /0 may be any real number and is measured

along the terminal side of & . rf,,,P is negative it is measured

along the'terminal side of &- extended through the pole. 9- is

measured counterclocitaise if it is positive and clockwise if it is

iegative. The polar coordinates (2, 30°), (2, -3300), (-2, 210°),

(-2, -150°) and (2, 390°) re' the same point.

CleaAf, thgre is no 1 - 1 cc*respoLdence of ordered pairs and

points in the polar plane.

Points can be plotted conveniently on polar coordinate paper

that has equally spaced concentric circles whose center is the

-pole and equally spaced radial lines ugh the pole.



1,4

7.2 - 3'

Q70°

It is often convenient to switch from rectangular coordinates

to polar coordinates or vice versa.

From trigonometry it is clear that

cos& = , sin e- tan

102 x2 y2

fr
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and

7.2.1

7.2 - 4

x = e.cos&r- ,

'3(2 y2,

y = p sin &"

&-= arc tan X

These four equations allow'us to easily change from

one system to anoth r. Most scientific calculators have

special keys that a ow you to perform a change with only

a few keystrokes. Microprocessors can be easily programmed

to execute these conversions.

EXAMPLE 7.2.2 .Determine how to change the rectangular

coordinate (x,y) to the polar coordinate (e

4

HP33E

(key y)

Th ENTER

(key x)

g P

(display is
e

)

R

(display is )

TI-58

(key x)

x >< t

(key y)

INV 2nd .F

(display is E )

x t

(display :;s ( )

I

TRS -80

10 INPUT X:Y

20 A SQR(X?2 + Y't2)

30 B = (TAN(Y/X))*57.291/8.

40 PRINT ".("A","B")"

36.2



Exercise Set 7.2

7.2- 5

(1 - 10) Plot each of the following polar.coordinates.on polar

coordinate paper.

1) A(3, -30°) . 2) B (6, 60°)

3) C(0, 20°) 4) D (-i, 1800)
"..'

N E(4, 0°) 6) F(4, 11) A

4'' 3?'7) G (+5, --y) 8) H (3, 7)

9) I(-2, .) 10) J (-6: -225°)

(11 - 14) Characterize the points wher'e-,

11) P= 2 12) P 1

13) a .., 45° 14) 0- - ---)?

15) Determine how to change, the polar cordinate-(i1,0-) to the
1

rectangular coordinate (x,y) on your calculating device.

(16 21) Find the nonnegativeepolar coordinates for-the follow-

\
ing points (a) by hand

(6) by using your calculating device.

16) 40, 2) 17) (-1, 0)

18) (- 1127:, 5) 19) tri, -2)

20) (-4, -3) 21) (-5, -12)

(22 - 27) Findthe rectangulArgicoordinates for each of the\fol-

lowing points (a) by hand 4

(b) by using your calculating device

36
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L

22) (6, 270

24) (307, 13

26) ( -.5,
)

23) (-8i 150°)

25) (2, -30°)

27) (-2, I)

7.2 -6

r

28) Explain 'he relation between polar coordinates and the cir-

cular functio s of section 7.1. ,

(29 , 30) C. fer section 7.1 and use your knowledge of polar

coordinates to find:

29) C(5)

30) t such t J5at C(t) = (.5, 7)

it

(
)



7.3 - 1

7.3 Graphs of Equations in Polar Coordinates

We have transformed points from rectangular coordinates '

to polar coordinates and the reverse. We can do the same for

equations. Recall equations from Section 7.2:

X = /5COS

=

= /0 in x2 + y2 = /02

&.= arc tan Y

EXAMPLE 7.3.1 . Find the polar coordinate equation corT

responding to 3x --2y = 2.

Solution: 3x - 2y = 2 04,

3( /0 cos er) - 2( A2 sin 0-) w 2 by substit4tion

3 /0 cos &- - 2 /0 sin Se = 2

/0(3 cos & - 2 sin ) = 2

EXAMPLE 7.3.2 Find the rectangular cookdinate 'equation

'corresponding to /2 = 3
1 + 4 cos&

Solution: 3

7) 7 + 4 cos&

/q + 4 /0 cosh- = 3

/0 + 4x = 3

/0 =.,3 4x

/0
2
= 9 - 24x + 16x2

+ y2 = 9 -424x 16x2

y2 = 9 - 24x + 15x2

36\5
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We can also graph polar equations.

EXAMPLE 7.3.3

e-

P

)

Graph the polar equation

7.3 -1

/0= 2(1 + sin& )

A program is helpful in determining coordinates.

o° 10°

2

20° 30° 40° 50° 60° 70° 80°

2.7 3 3.3 3.5 3.7 3..9 4.0

ey loo° _110° 120° 130° 140° 1500 1600 1700 ,180°

/2, 4 3.9. 3.7 3.5 3.3 3 2.7 2.3 2 II

& 190° 1 200°, 210° 220° 230° 240° 250° 260° 270°

/0 1.7 1.3 1 1 J.7 .5 f .3 .1 .03 0

et. 280° 290° 300° 310° 320° 33051 340° 350° 360°

.03 .1 .3 .5 .7 1 1.3 1.7 2

366
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7.3 - 3

This graph is called a ciidioid because it is a heart shaped curve.

Exercise Set 7.3

(1'- 10) Transform the following equations to the corresponding

polar coordinate'equations.

1) x4 2)

3) 2x - 3y = 7 4)

5) x
2
+ y

2
.a."-.9 6)

35

y = -3

x = y + 4

x y = 10



7) .xy = 7

9) x2 - y2 = 10

7.3 -4

8) x2 + y
Z

- 3x + 2y = 0

10) y = 3x

(11-20) Transform the following equations to-the corresponding-

rectangular coordinate epiation.

11) ,D =

13) /0 =

15) /0

17) 141
I

19) /0

3 12) & = 30°

3 sin 6* + 3 cos 6 14) /0 = 3 sin - 2 cos&

cos as- = 8 16) /0
3

sin = 9

18X 3
1 +23 cose-

/0 + 2 cose-

sec 20) r. tan&

(21 34) Graph each of the following on polar coordinate paper:

Plot points at 10° intervals.

,,21) /0.= 1 + 2 sin 6-

23) /0 = 3 cos 20-

25) /0 = tan &

27) 10/ 3+ 2 sine-

29) /0 = 2 + 2 cos 0-
eb--

31) .4 = 3&
r-**

33) e2
/6.

22) /0 = 1 - cos 0--

24) /2 = 2' sin 363.

26) ./0.= sec 6-

28)
/° ! CIQS&'

30) ,/0 3 + 2 sin &-

32) /015- = 6

.34) /0 = 4 sec a-

36 8.



.Polar Form of Complex Numbers

7.4 - 1

4

Complex numbers can be graphed by using a c dtnate system

having a real and an imaginary axis. We can also graph complex

numbers in polar coordinates.

Let z = a - bi then

a.44 c*,

r cos&

or z = r (cos

definition.

a
r

= cos (5-

1-1 = sin e-

2

and b = r sin . Thus z = r cos& + r sin 8--
0

+ i sin ) .and explain the following important

Definition 7.4.1. Let z = bi be a complex

number then z = r. (cos a + i sin a. ).. This

is called the polar form of a complex number.

The length r is calllitthe modulus of z and the'

angle & is called the argument of z.

Since r is a length it is always riOnnegative:, In fact r

is the absolute value of z or r = IzI . Recall that Ixf =

.0 r = I Z1 st tl(a + bi)2 = is b2

363



7A - 2

t EXAMPLE 7.4.2 Express -.2 + 2i in polar' form

r = I) (-2)2 + (2 1.5)2

= 4,+ 12

=

2 L.1-5-
cgs-CY = . sin & -4

.

1 r3-
cos & = sine... 07.

S. = 120° 60°

e- must be'a 2nd quadrant-angle.

sin 60° = sin 120° so e' =120°.

+ 2i a = 4 (cos 1209 + i sin 120°)

,This example exhibits the need to remember the following-identities.

;sin (- t9- ) = - sing cos (- 4) = cos&

sin (180 - 9-)°= sin& cos (18 - )°= - cose-

The following verbal algorithm can be used to write a pro-
,

gram to do this example.

1. remember a, b.

2. 3,- tia2 + b2, remember-r

a
3. Cr.- cos

-1
(1:), remember

er* 4.- sin
-1 b.(-), remember a-

*

5. display r, ,

6. stomp

&and 49'1` are both included in this algorithm to help us remember

that cos-ix 'and sin x' are not functions and we may have to think

3 "10
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caiefully before we can dec4de the value of 8 .

7.4 -3

EXAMPLE 7.4.3 , Express 2(Cos ,230° sin 230°) in

standard algebraic form.

.12300

A a = 2(cos ,230)

b 2(Sirk 7300) - 1.5321

, 2 (cos, 230° + i sin 230°)

- 1.2856 -.1.5321i
. .41

The following algorithm can be used to write a program to do
, *

this example. / w .

1111.

1. Remember r,-0-

2. a k- r cos 13- , remember a

3w b r sin G- , remember. b

4. display-a, b

-stop. ...;,
a

4

A

.

*itr
,

The polar form-sPof complex numbers enable us to easily multi-AL . .

ply and sdivide them,:
.

Theorem 7.4.2 ,If\ zi = r1 .(cos &l + i sin G- ) and

z
L

= r2(cos_49-2, 1i sin 9) .then

. .
.21z2 ri r2 cos ( + C4-2) + sin ( +

r -41
Proof

(cos ea' + i sin. &1)i Tr2 (aps 1a2 + i )z1 72 = Cr).

= r1 'r2 rcos'.eci dos i COS EY-1 sin + i sin cos(

. .

+ -i2 sin sin OA
. -41111

* Q
(P A - "I



4

p

Recall that:

and

,
cos x cos y sin.x sin y = cos (x+y)

sin,x cos, y_+ cos x sin V= sin (x+y)

rir2 [cos el cos . &2 - sin. 9.1 sin (24-2 +

i (sin &icos 82 cos .072 sin M
ti

7.4 - 4

= N.142 Lcos ( er + e-2) +

EXAMPLE 7.4.6 Find the product

sirl CE31-E t"253

A -r

.3 (COS 32° + sin 32') 5(cos 106° + i s in 106 )

= 30) Ecos (32 + 106)° + i iina(32 + 106)1

= 15 ,(cos 138° + i sin 138 o)"

'Theorem 7.4.71 J
If z1 r

1
(cos 4,1 ± i sin &i) and

. .

6 z2 = r2 (ces

Proof

z

z2,

Alk

der

r
1

r
2

[cos

Q-2 ;+ i sin D-
2
) then

.

+ i sin ,( (;)*I.

r, (cos, erl sin 60-i)
_ r2 (cos 0.2 t i sin G.2)

ri co4 6.1 +

r
( cosiet2 +

sin &I.)

sin 0-2)-

37,2

(cos 19- - i sin t&2)
(cos e-2 - i 6-2)



7.4 - 5

2 1, .r I (cos ercos 6-2." - i sin 43-2cos el-4; i sin ei cos &2-2-1. c3-2)
r2

\

(cos
2 a.

2
+ sin 8.2)8-2)

r1 Ecos eicos&-2+ in 131sin &2) + i(sin 5-icos Er2dosei)j
r2 (cos2 2+ sin e)- )

2 2

Recall that
fiacos x cos y + sin x sin y = cos (x-y)

thus

sin x cos y - sin y cos x = sin (x-y)
- sin2 x + cos 2 x 1

J

z
2

fi cos ( &1 - e2) i sin (e'l &25.1 .

1

2

EXAMPL 7.4.8 Find the quotient

5 .(co 120° + sin 120°) ?(cos 21?° + i sin 212°)

7-3- [cos (120 - 212)° + i sin (120 - 21 )6]

= 2.5 cos (-92)° i' sin (-92)°]

= 2.5 (cos 2613° + sin 268°)

It is customary to represent the polar forms of complex numbers

in isms of positive angles!

it)

leo

:3

%D.
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Exercise Set 7.4

7.4 - 6

(1.- 8) Rewrite each of the following complex numbers-in polar

form. /
. A

1) 2 - 3i

3) '3 J 3 - 3i

5) . -.1

7) 5i

2) -5 + 3i

-4) 1 +iff
6> 6

8) -3i

40

(9 - 16) Rewrite each of 'the following polar forms of complex

numbers in standard algebioic form.*
4

9) 5 (cos 10° + i sin 30°) 10) 3 (cos 210° + i sin 210P)

11) 3 (cos 90
o + i sin 90

o
) 12). cos 0

o + i sin 0
o

13 -.73 (cos 118° + i sin 118°) L4) 3.42 (cos 243° + i sin 243°)

15) 47 (cos 275° + i sin .z.750) 16) rlcos 138° + i sin 138°)

(17 - 24) .Perform the following operations.

17) 3 cos 10° + i sin 10°) 5 cos 106° + i sin 106 °)

. 18) 2 (cos 135° + i sin 135°) ',J (cos 213° + i in 213°

19) 6 (cos 78° +1'i sin 78 °.) .-2
0)

3.ta (cos 238° + i sin °238 °)

- 2 (cos 27° + i sin 27?) # 6 (cos'103° + i sin 103°)

4i.

2z21)
I 1.

22)
5(cos 10

o
+ i sin 10 °)

3 co 10° + i sin 210°) 2 (cos 209° + i sin 209 °)

*
You may want to write programs using the 'vernal algorithms pre-.
sented in this section.

(T7$
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7.4 - 7

.

2) 3 (cos 18° + i sin 180)2 24)
o

5 cos 250_ + i sin 2500)2

(25 - 28) Change the following compldk numbers to polar,form,

perform the indiCated operations in polar form andAthen express

the results in rectangular form.,

25) (2 + 3i 15) (2 - i (5) 26) (Ca - i) = (1 + i

27) (5 - 2i) i (6 + .5i) 28). (1.+ 3i)
4

29) Find the distance between the points a + bi and c + di.

30) Show that if r
1
(cos 9-

1
+ i sin 0.1) = r

2-0
(cos &

2
+ i sin la )

then rl = r2 and &'). = &2 + k 360° where k is an integer.
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7.5 De Moivre's Theorem

In section 7.4 lip develOped means for multiplying complex

numbers in polar form. We can extend that idea toowers and

roots.

then

#

Let z = r(cose- i sine-) and n a positive integer

Zn = [r. (cos P- + i sin &--).1 [r. (cog +.i sin6 ) .

0
.,

[r (cos e- tr )j n terms

= r.r.....r [cos ( + ) i sin ( v-+ v+.. .+6")]
4P.A.A.-ca hs. 4%,

=irn [cos (n & ) + i sin (n 0.)j .

thus Er (cos & + i sin e- ) = rn i

rcos (n.&) + i sin (.&)7.

We have just proved a special case of a more general theorem

known as Defloivre's Theorem.

Theorem 7.5.1 (DeMoivre) A

If n' be any compleX number then

(cos, &- )_1

n
=+ i sin x, [cos ;TT,&-) + i sin (11.04.]

1

DeMoivre's thecA,e,E,..i,s named after Abraham d..ec Hoivre (1667-1754).
e"-

He was born in France but did most of his work in England where he

was a friend of Newton and a fellow of the Royal Soc'iety.
t

Using DeMoivre's theorem-we can not only find powers 'but roots -

of complex numbers.
-



EXAMPLE 7.5.2

Theorem.

7.5- 2

'
Determine (3 + 4i) 10

using De Moivre's

Solution: 3 + 4i = 5(cos 53.1301° + sin 53.1301°)

15(cos 53.1301° + i sin 53.1301°)..] 10.
510r LCOS(10-53.1301°)

i sin (10.53.1301°)j

= 9,765,625 [cos (171.3010)° + i sin (171.3010)1

= -9,653,286.999 + 1,476,984_007i

+ 1,476,984i

EXAILE 7..3, Using DeMoivre's theorem find the three cube

roots of 8.

Solution: 4= 8 (cos 0° + i in 0 °) and

8 = 8 ,[cos (0 + k 360)° + i sin (0-+ .11360)1

where k is any positive integer

= 8-t icos(k360)

= 2

= 2

= 2
0

o (0+k.3.60)0]

[cos(3)° + i sin(3)°] when k = 0'

[cos(.---) + sin(T'cl) when k = 1

(720,c1cos(---) ) When k = 2

, If ,k = 3 the result is the same as for k = O.

2(cos 0° + i sin, 0 °) = 2

2(ecis 120° + i sin 120°) = -1_+

2(cos 240° + i sin(240°) = -i1 -0
4

The cube roots of 8-are 2,'11 + i 3, -1 i5.

1

A

t



It can be proved,

= 1 +

cos

sinbr =

7.5 3

by means beyond our_present grasp, that:'

2 . 0.4
+

+ +.

6

tT
7! 9!

2

0
where e is the base of natural logarithms and 1?- is measured in

ra 'ans.

If

1

let i'0 = 6i- where i = we obtain

=cos 6- (i
2! 40)2

+ (i0)1 4 (1
61
0)6 (i8

--gT

sin &

0
i

(i0)
3

4_ (i0)
5

(i0)
71

..6 7
.1.0

7
4_ (i0)

9

3!

120310

5!

140510

9!

810
J. 3! 5! 7! 9!

_ 0 t
3 5 7 9

-TT ST 7T gT

sin er sin -1
---r

- i sin &""

.3 n4
cos er - i sin(1): = 1 + + 4 +

.
cos 63`-- i sine" ---- e0 = el =e

now replace [r by -br , cos

- sjpn

and we obtain

cos(- 6)
= sin(- tj-)

cos t:0- =

376

e



7.5 - 4

'This important result is called Euler's formula. _It has para-

cular.sivificance to electrical and electronic engineers.' If .

tr.=
r,.

we have

e
111

= cos it + i sin I/1 = -1 + i(0) or

Euler's Equation: e

Exercise Set 7.5

"M.

(1 - 8) Use DeMoivre's Theorem to find the value of each of the

following expressions.

1) (-3 + i)
4

2) (2 - 3i)
5

3) (cos 28° + i sin 28° 5 4) [2. (cos L07° + i sin 107°)] 7

-
it2)10

6) (0 - i) 7

7) (-1 -i):
8

8) (-1 +i) -6

9) Find the fourth roots of (2'- 2i5)-and represent your answers 44

in algebraic form.

10) Find the cube roots of (-5 t 3i) and represent your answers

in algebraic form.

11) Find the cube roots of 1.

12) Find the fourth roots of i.
4

(13 - 16) Anypolynomial of degree n with complex numbers as

coefficients has exactly n distinct complex roots. Find all the
1

roots of each of the foll wing equations.

//P



7.5 5.

r

13) x4 - 1 = 0 14) x5 - 32 = 0/

15) x3 + 27i = 0 16) x2 = iLr2 - 1

17) Use Euler's formula to' verify DeMoiwre's theorem for any

positive integer n.
4

(18 - 19) Use Euler's formula to show that

-e
+ e-it9"

18) sin 6- e e "cosgz =
2 c' 2

20) Explain why i positive integer raised to an, irrational power

as 2
Lff '-

has An infinite number of values hone of which is a

real number.

i.

3L)



7.6 - I

7.6 Calculating Trigonometric Functions

You have always determined specific values of trigonometric-

functions by either using tables or pushing keys on your calcu=

Iating device. 'But where do'these numbers come from?

One way to compute trigonometric values is by using infinite

series. Recall that a polynomial, P(x), is an tression of the

form P(x) = anxn + a
-1
xn 1+ a

n=,2
+ xn-2 + + a2x2 + alxl + an 0

where the coefficients are constants and n is a positive integer.

If a polynomial continued forever it would be a power series.

.Definition 7.6.1

The expression f(x) = c
0

+ clx + c
2
x2 + c3x3 + where

the el.'s are constants is called a power series.

A polynomial has a finite number of terms. A power series ha

infinitely any terms. Thus, when we evaluate a power series we\

can only calculate an approximate value.

2 . 3 4
EXAMPLE.7.6.2 Evaluate f(x) =i+x+x +x +

ST
x

T

.

g
when x using. only the first six

terms of.the series.

+ .5 + '52
3

'54 55 c6+ _Tr + + +

1 .25 + .125 .Q625 .03125 .015625
-7- / --' 120 . ---720

= 1.648719618,
3s1
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Ntice that the values of higher degree terms get smaller becau,se I(

the numerators get smaller and the denominators get larger. If

x = 1 this series becomes

1
f(1) = 1 +.1 + -2T + Tr + + = e

This particular power series is an "old friend."

Definition 7.6.3

_2 _3
ex = f(x) = 1 + x + +

2T 71-

other, "old friends" that can be represented. as power series are:

Definition 7.6.4

3 a5 7

sine. =
t,

+ c + & in radians
7T 5T 7T '

Definition 7.6.5

cos er = 1
4 n.6

- + r in radians

These partitular power series are of a generic type Called,Taylor

series. When you study the Calcillys you 1411 not only study why (I

these serieertpresent these functions but other properties and

applications of these series.'

EXAMPLE 7.6.6 Calculate cos( ) using the first five

terms of its pol4aT series.

Solution:
/1.2 A.4 4.6

rs, ) ) (11
cos(-}) = 1 + °;.. -6T +

3 S



5

We know that cos(f) = 77 707106781 so it is easy to see

\<\7.6-- 3

(4) (4) (4.) (4)
= 1 - +7 7'4 77U 40320

= .707106806

.

that only five terms o this. power series give accuracy up to

rf'six decimal pltces.

Another way to calculate values for trigonometric series is...
to contil-er the geometry of the unit circle and use recursion.

Let be a measure of an angle in radians. Whets er.i.s placed in

the unit circle we have the following diaiiam.

\a

We shall be interested in the length c of the chord of arc length

deterillted by the angle of measure

3S3



x2 y2

(x..1)2 2

7.6 - 4

(x,y)4is on the.unit circle

distance formula

By subtracting theipecond equation from the first we obtain.-

2x - 1 .= 1 -

so cos = x = a - kc
2

diameter perpendicular to our chordbisects

arc. Also, the angle inscribed

angle.

in the semleirole is a right

and we have similar triangles.
2

JI

The diameter is of length 2 so

k:h = h:2 and k = r Also; by the Pythagorean theorem
1

k
2

,2-

'77 = 112

I .



I

thus

or

2 '

(T)" ) +.

c2 h2(4
h2).

7.6 - 5

The important thing'Vo notice in this formula is that if Al re-

presents,h2, the square of the chord for the arc 672, then
.

A
1
(4-A

1) gives the square.of.the chord for the arc k. . As we saw

above, cos Er. is 1 mine half'this number.
e

How can we firid All, Sire

Al = A
2
(4-A

2
)

where A
2
is the square of the chord for -47 .

40(
Similarly, A2 = A3(4-A3), A3 being the square of ehe chord for 678.

In general .

A

for ei2k.

#
Ak.1 = Ak(4-Ak) where At is the square of the chord

385-

I

a

(
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1

,-*

If we are actually doing the computations this way we must

start 'somewhere. If we are given Er betWeen 0 and 2 II , it

er-turns out er

6 6 6
that arc is so small that it is "very1553

nearly equal" to its own chord. Thus a very smal,1 error is made-
,

in using ( 076536); fOr the (chord)2.

\I

We can present this calculation as a verbal algorithm.

3..6.6 Verbal algorithm for computing cose' where 0-c .er < 2?-. ' 1

1. AA-- ( er/65536)2, N4 0

2 . A4-- A(4 - A)
..

.

.

I

1

3. N4-- N + 1

4. If N = 16 display 1 - 0,5A and.STOP otherwise go to step 2.

EXAMPLE 7.6.7 Write a program for your calculating

devire for verbal algorit 7.6:6.

HP 3E

.01 ENTER
02 f clear reg
03 6

04 5

05 ,5

06 3

07 6

7 02

1.1 g x
10 STO 1
11 0

So

12 STO 2
13 1

14 6

15 STO 3
16 RCL 1
17 CHS
18 4
19 +
20 STO x 1
21 1

22 STO + 2

3S6

23 RCL 3
26 RCL 2
25. f x t y?
26 OTO 16
27 'RM.. 1
28
29'' 5
30 x
31 . CHS
32

1/7
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7.6 4 °7'

00:.
01'

02
03
04
05 '

f

6'
5

5

3

6_

lb
17
18'
19'
20
21

2nd.a1
A

RCL--,

01
+/-

-1-'

.

.

-32

33
'34
35
3E,

37

'x f
A
RCL
01
x

t?

06
2

22 4 38 5
07 x 23 = 39 =
08 STO 24 2nd Pra... 40 +/-
09 01 25 01 4r +
10 0 26 1. 42 1 .

11 STO 27 SUM _) 43 =
12 02 28 02 44, R/S t,-
13 1 . '29. RCL

,

45, RST
14 6 i 30- -02 .

15 x,>< t 31 INV 2hd ;

c

TRS-80

10 ,INPUT T
20 A = (T/65536) 1' 2
30 N = 0
40 A = A(4 - A) )_

50. N = N + 1
-60 If N = 16 PRINT 1 - 0.5*A AND STOP

ELSE 20.

Exercise Set 7.6.

1'

- 6) Using the first seven terms of the power series expansiori

of e determine each of the folfowine Compare your results with

those obtainedi3sy directly using thekey, (Or instruction) for powers

of e on your calculating device.

1) e2

3) e

*

2)t e3

4) e'

*You may wish to write a program to do these.exercises.

3S?
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I
ti

e-2 6) e
-1

(7 - 14) Using the first' five terms of the power series'expan-

.sion of cos& or sin Er determine each of the follOwing. Com-- .1

pire your results with those obtained by directly using the key

(or instruction) for these functionson your calculating deviee.-
* .1_

7) sin 17. : 8) cos
r
a

%

1;-

9) cos ii/6 10) sin 4 .

11) cos (-11-) 12) sin (-1h 1

13) sit.27° ' 14) cos 123°

1

`15) Toliaow many decimal places would you expect the apprbxima-
.

tion of e2 to be accurate if you use only the first sevenr

..,
, terms of its "power series? Explain. (Confer exercise,1.)

.

. .

.
.

_

16) How'many,decirrial pAces'would you expect the approximation

1- 'of cos -- to be accurate if you use only the first five terms
,

of its power series ?, Explain. (Confer exercise 8.),

X3 X
5

17) Plot a graph of\y = x - + 5T, for -4 < x < 4 at intervals
. A .

of :5. On the same set of axes plot y = sin x. For ,what

valuesof x dó the graphs seem to be close together ?. .

2 4
AN

18) Plot.a graph of yr 1 - L 77- for -4 < x < 4 at intervals 1
. .

,

of .5. On the same.set of a3(es ploty = cos x. For what

values of-x do the graphs seem to be close togther?' 1
1

(L9 - 22)' Use algorithm 7.6.6 (or.programs 7.6.7) to determine

each of the following. Compare your resglts to the indicated

You may wish to write a program to do these exercises. '1.

V

353.
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0,

7.6 - 9
.

?

19) ' cos .
....
0/6 (9) 20), cos 97 (18)*

. .

21) cos (-'17-') (11) __. 22) cos 123° (14) . .,
, i-,,

S

C.

,..

'4) .

fa.

f t.

I

.

41.

11/
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Chapter 7 TEST

1) Find the rectangular coordinates of the following

point: (3 ff, 450).

2)0 Represent -thl point (-2.13,' 2) in polar' :coordinate form

with e< 0.

3) Transform tie equation x + y = 6 from rectangular 'to

polar coor dinates.

Transform the equation /0 + 1pcosi;. = 4 from polar to

rectangular 141-,4nates. .

\

i , .

5) Express .i (cos 210° -4- i sin 210°) in a + bi form.

05 Change x 2 + y 2
= Zx.+15 from rectang r,000rdinates to

. i
L...

polar coor4inate1s. -

7) Express 1 - i. in the f (cos 9- + .i sin e-)..

8) Exptess in the form a + bi t e quotient obtained1when

12 (cos 90° + i sin 90 °) is diviedb'y 3(cos 60° sin 60P)I

9) A root of x3 + 8 = 0 liep in quadrant IV. Express this

root in the form r(cos0- i sins ).

10) Multiply 2(cos 115° + i sin 115°) by. 6(cos 245° + i sin 245°)

and express the result in th'erectangular form, a + bi."_

7
11) A cbmplex root of x5 + 32 = 0 is:

) (1) 2(cos'72° + i sin .72 °)

.(2) 2(cos 36° + i sin 36°)
. I

(3j -2(cos 108° + i sin 108°)

(4) -2(cos 16° --, i Isin 36°)
I

I

12) EXftess the product of 3 + .2i and 2i in-the form .r cis &- .

3 0
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13) Write the expression Pf(cos 30° + i sin 300)] n,

the form' bi.

14) Express the compj.ex number J + i J2 in' the polar form,

r(cos + i sin 8). er

2 + 3i. 15) Express the quotient 1., in poi form. (Simplify

completely.} ,

k6) 'Using DeMoivrelg/Tkeorem find:

(a)
t,

[A(cos 45° + i sin 45 °)J 5

.r- 3(b) + u3)
"b.

17) USing De Moivile's Theorem, find the indicated roots:

(a) The,five fifth roots of VT. -i If2 .

.
(b) The four fourth roots of 2 (cop 100° + i sin 100d)

,

18) Complete Ohe table and then,, on the Polar' coordinate paper'

provided,,sketch the graph of r = 1 - 2 cos A-

Fix 1 on your calculator

r
10 °'

20P
30°
40°
50ci;

60:
70:
80:
90°

0)100(
110

130°
140°
150

o

160°,

170Y
180,?,

190:
200°
210'
220,
230:
240°

25r)-
2600
270°
280°
290° 0)

300,
310:
320`i)

330
3402
35Wc;

360

-00
91


